气压对SF_6负极性直流局部放电分解特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Atmospheric Pressure on the Decomposition Characteristics of SF_6 Under Partial Discharge at Negative Polarity DC Condition
  • 作者:唐炬 ; 黎可 ; 姚强 ; 苗玉龙 ; 曾福平 ; 张潮海
  • 英文作者:TANG Ju;LI Ke;YAO Qiang;MIAO Yulong;ZENG Fuping;ZHANG Chaohai;School of Electrical Engineering and Automation, Wuhan University;Chongqing Electric Power Research Institute,State Grid Chongqing Power Company;Wuhan NARI Limited Company of State Grid Electric Power Research Institute;
  • 关键词:SF6 ; 直流局部放电 ; 气压 ; 分解组分 ; 产气均方速率 ; 特征组分含量比值
  • 英文关键词:SF6;;DC partial discharge;;air pressure;;decomposition component;;mean square velocity;;ratio of characteristic components
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:武汉大学电气与自动化学院;重庆电力公司电力科学研究院;国网电力科学研究院武汉南瑞有限责任公司;
  • 出版日期:2019-01-29 13:59
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.314
  • 基金:国家自然科学基金(51607127;51537009);; 湖北省自然科学基金创新群体项目(2016CFA007)~~
  • 语种:中文;
  • 页:GDYJ201901021
  • 页数:8
  • CN:01
  • ISSN:42-1239/TM
  • 分类号:165-172
摘要
为了探究在负极性直流局部放电(PD)下气压对SF_6分解特性的影响,在研制的直流SF_6组分分解实验平台上,通过系统实验研究,获取了SF_6分解特征组分随压强的变化规律。研究结果表明:在负极性直流PD作用下,SF_6会发生分解生成SO_2F_2、SOF_2、CO_2、SO_2、CF_4这5种稳定的分解产物,且其生成量均随气压的增大而减小,但下降趋势存在差异,并表现出了与交流PD条件下截然不同的变化趋势;SOF_2、SO_2F_2、CO_2、CF_4、SO_2的均方产气速率均随气压的增大而减小,其中CF_4的均方产气速率随气压的增大呈指数规律下降,更适用于在故障诊断中校正气压带来的影响;特征组分体积比值CF_4/CO_2、SO_2F_2/(SOF_2+SO_2)、(CF_4+CO_2)/(SO_2F_2+SOF_2+SO_2)随压强增大呈现出了不同的变化趋势,其中CF_4/CO_2和(CF_4+CO_2)/(SO_2F_2+SOF_2+SO_2)具有较大的分散性,不宜用作故障诊断中的气压影响校正,而SO_2F_2/(SOF_2+SO_2)随气压的增大呈单调递减,更适于用作校正。论文研究表明在负极性直流PD条件下运用SF_6组分分析法进行故障诊断时,必须考虑气压的影响并进行校正。
        In order to research the influence of atmospheric pressure on the decomposition characteristics of SF_6 under partial discharge(PD) at negative polarity DC condition, systematical experiments were carried out on a DC experimental platform of SF_6 component decomposition, and the variation of each characteristic component with pressure was obtained. The research results show that, under the PD of negative polarity DC condition, SF_6 will decompose to produce five stable decomposition products, which are SO_2F_2, SOF_2, CO_2, SO_2, and CF_4. The concentrations of these five components decrease with the increase of pressure, but the descending trend is different and it is completely different from that at AC PD; the mean square production rates of SOF_2, SO_2F_2, CO_2, CF_4, and SO_2 all decrease with the increase of pressure, and CF_4 decreases exponentially with the increase of air pressure, which is more suitable for the correction caused by pressure in fault diagnosis; the ratios CF_4/CO_2,SO_2F_2/(SOF_2+SO_2), and(CF_4+CO_2)/(SO_2F_2+SOF_2+SO_2) show different trends with the increase of pressure, the ratios CF_4/CO_2 and(CF_4+CO_2)/(SO_2F_2+SOF_2+SO_2) have a large stastic dispersion, which is difficult to be used for correction.The ratio SO_2F_2/(SOF_2+SO_2) decreases monotonically with the increase of air pressure, which is more suitable for correction. Therefore, in the case of negative polarity DC PD conditions,the impacts of air pressure and correction should be considered when using SF_6 component to analyze fault diagnosis.
引文
[1]钱照明,张军明,盛况.电力电子器件及其应用的现状和发展[J].中国电机工程学报,2014,34(29):5149-5161.QIAN Zhaoming,ZHANG Junming,SHENG Kuang.Status and development of power semiconductor devices and its applications[J].Proceedings of the CSEE,2014,34(29):5149-5161.
    [2]许杨,李锋锋,刘颀,等.SF6分解物检测在高压直流套管故障诊断中的应用[J].中国电力,2013,46(7):61-65.XU Yang,LI Fengfeng,LIU Qi,et al.Application of detection technology of SF6 decomposition products to fault diagnoses of HVDCbushings[J].Electric Power,2013,46(7):61-65.
    [3]OHKI Y.Thyristor valves and GIS in Kii channel HCDC link[J].IEEEElectrical Insulation Magazine,2001,17(3):78-79.
    [4]RIECHERT U,STRAUMANN U,GREMAUD R,et al.Compact gas-insulated systems for high voltage direct current transmission:design and testing[C]∥IEEE/PES Transmission and Distribution Conference and Exposition.Dallas,USA:IEEE,2016:1-5.
    [5]唐炬,杨东,曾福平,等.基于分解组分分析的SF6设备绝缘故障诊断方法与技术的研究现状[J].电工技术学报,2016,31(20):41-54.TANG Ju,YANG Dong,ZENG Fuping,et al.Research status of SF6insulation equipment fault diagnosis method and technology based on decomposed components analysis[J].Transactions of China Electrotechnical Society,2016,31(20):41-54.
    [6]CHU F Y.SF6 decomposition in gas-insulated equipment[J].IEEETransactions on Electrical Insulation,1986,21(5):693-725.
    [7]张晓星,周磊,裘吟君,等.针-板缺陷开关柜局部放电与空气分解组分的关联特性[J].高电压技术,2016,42(12):3948-3954.ZHANG Xiaoxing,ZHOU Lei,QIU Yinjun,et al.Correlation character between switch gear’s partial discharge quantity and air decomposition components under needle-plate defect model[J].High Voltage Engineering,2016,42(12):3948-3954.
    [8]沙彦超,蔡巍,李大卫,等.气体绝缘开关内部固体绝缘件缺陷产气特性[J].高电压技术,2017,43(1):256-265.SHA Yanchao,CAI Wei,LI Dawei,et al.Gas generation characteristics for solid insulation defects in the gas insulated switchgear[J].High Voltage Engineering,2017,43(1):256-265.
    [9]TANG J,ZENG F,ZHANG X,et al.Influence regularity of trace O6on SF6 decomposition characteristics and its mathematical amendment under partial discharge[J].IEEE Transactions on Dielectrics and Electrical Insulation,2014,21(1):105-115.
    [10]DREISBUSCH K,KRANZ H G,SCHNETTLER A.Determination of a failure probability prognosis based on PD-diagnostics in GIS[J].IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(6):1707-1714.
    [11]张英,张晓星,李军卫,等.基于光声光谱法的SF6气体分解组分在线监测技术[J].高电压技术,2016,42(9):2995-3002.ZHANG Ying,ZHANG Xiaoxing,LI Junwei,et al.On-line monitoring technology of SF6 gas decomposition components based on photoacoustic spectroscopy[J].High Voltage Apparatus,2016,42(9):2995-3002.
    [12]HASEGAWA T,YAMAJI K,HATANO M,et al.DC dielectric characteristics and conception of insulation design for DC GIS[J].IEEE Power Engineering Review,1996,17(13):50-51.
    [13]VOLPOV E.HVDC gas insulated apparatus:electric field specificity and insulation design concept[J].IEEE Electrical Insulation Magazine,2002,18(2):7-36.
    [14]VAN BRUNT R J,HERRON J T.Plasma chemical model for decomposition of SF6 in a negative glow corona discharge[J].Physica Scripta,1994,53(2):9-29.
    [15]VAN BRUNT R J,HERRON J T.Fundamental processes of SF6 decomposition and oxidation in glow and corona discharges[J].IEEETransactions on Electrical Insulation,1990,25(1):75-94.
    [16]唐炬,陈长杰,刘帆,等.局部放电下SF6分解组分检测与绝缘缺陷编码识别[J].电网技术,2011,35(1):110-116.TANG Ju,CHEN Changjie,LIU Fan,et al.Detection of constituents from SF6 decomposition under partial discharge and recognition of insulation defect coding[J].Power System Technology,2011,35(1):110-116.
    [17]鲁钢,郭江涛,孙福军,等.GIS在局部放电下的SF6气体分解产物实验研究[J].高压电器,2013,49(6):10-16.LU Gang,GUO Jiangtao,SUN Fujun,et al.Experimental study on relationship of SF6 decomposition products and partial discharge in gas insulated switchgear[J].High Voltage Apparatus,2013,49(6):10-16.
    [18]胡瑶.针-板缺陷模型下SF6的电晕放电分解特性及其影响因素研究[D].重庆:重庆大学,2014.HU Yao.Study on corona discharge decomposition characteristics of SF6 and the related influencing factors under the needle-plate electrode[D].Chongqing,China:Chongqing University,2014.
    [19]TANG J,ZENG F,PAN J,et al.Correlation analysis between formation process of SF6 decomposed components and partial discharge qualities[J].IEEE Transactions on Dielectrics and Electrical Insulation,2013,20(3):864-875.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700