根系局部NaCl处理对葡萄植株伤害度、Na~+积累和碳氮分配的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Local Root Zone Salinity on Grapevine Injury, Na~+ Accumulation and Allocation of Carbon and Nitrogen
  • 作者:孙红 ; 姜亦文 ; 于昕 ; 相广庆 ; 姚玉新
  • 英文作者:SUN Hong;JIANG YiWen;YU Xin;XIANG GuangQing;YAO YuXin;College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture;
  • 关键词:葡萄 ; 局部盐处理 ; 伤害程度 ; Na+离子流 ; 碳氮分配
  • 英文关键词:grapevine;;salt treatment of local roots;;injury extent;;Na~+ flux;;allocation of carbon and nitrogen
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:山东农业大学园艺科学与工程学院/作物生物学国家重点实验室/农业部黄淮地区园艺作物生物学与种质创制重点实验室;
  • 出版日期:2019-04-01
  • 出版单位:中国农业科学
  • 年:2019
  • 期:v.52
  • 基金:国家自然科学基金(31872068);; 国家葡萄产业技术体系建设专项(CARS-29);; 山东省自然科学基金(ZR2018MC021)
  • 语种:中文;
  • 页:ZNYK201907005
  • 页数:10
  • CN:07
  • ISSN:11-1328/S
  • 分类号:60-69
摘要
【目的】盐胁迫严重影响果树作物产量及品质。自然条件下,土壤中盐分浓度不均一,同一植株根系不同部位所处的盐环境不同。本文旨在测定根系局部盐处理对葡萄植株的伤害程度,并从Na~+积累特性和碳氮分配角度揭示非处理侧根系缓解盐伤害的机理。【方法】利用分根栽培控制根系盐环境,根系两侧NaCl浓度(mmol·L~(-1))设置为0/0、0/50、50/50、0/100、100/100 5种处理。通过测定叶绿素、丙二醛(MDA)和叶绿素荧光参数来反应植株伤害程度;通过测定Na~+含量、离子流和根域介质电导率来检测Na~+体内运转特性;通过测定氮肥利用率和碳氮分配率分析不同盐处理下各组织碳、氮水平。【结果】处理15 d和30 d时,双侧均匀盐处理显著降低叶绿素含量,提高叶片和根系MDA水平;同浓度单侧盐处理能有效缓解叶绿素下降和MDA积累。Fv/Fm、ETR等叶绿素荧光参数测定表明了相似的结果。以上结果表明,单侧盐处理下,非处理侧根系能有效减轻盐对葡萄植株的伤害。处理15 d时,各种方式的NaCl处理均不同程度增加了根系和叶片Na~+含量;尤其是在单侧盐处理下,非处理侧根系Na~+含量显著增加;与同浓度双侧均匀盐处理相比,单侧盐处理显著降低了叶片Na~+水平,100 mmol·L~(-1)单侧盐处理显著降低了处理侧根系Na~+浓度。非盐处理对照根系Na~+流为内运;处理24 h时,双侧盐处理的根系外排Na~+,100 mmol·L~(-1)单侧盐处理下非处理侧根系Na~+流转变为外运。此外,单侧盐处理下,非处理侧根系周围栽培介质电导率较对照显著提高。以上结果表明,处理侧根系吸收的Na~+能从非处理侧根系排出体外,避免处理侧根系和叶片Na~+大量积累。根系双侧NaCl处理显著降低了氮肥利用率,且与处理浓度有关;单侧盐处理能减缓氮肥利用率的下降,并且0/100 mmol·L~(-1)处理下,非处理侧根系氮肥利用率较对照显著提高。双侧盐处理尤其是100 mmol·L~(-1)重度盐胁迫不利于氮向叶片和根中分配,而促进了氮向多年生蔓中分配,利于氮的储存。而单侧盐处理降低了多年生蔓中氮的储藏,同时缓解了叶片和根系中氮分配率的下降。双侧盐处理降低了叶片和根中碳分配率,单侧盐处理能缓解叶片碳分配率的下降,提高盐处理下根系碳分配率。50和100 mmol·L~(-1)盐处理对一年生蔓和多年生蔓碳的分配率具有不同的影响,50 mmol·L~(-1)单、双侧盐处理提高了多年生蔓的碳分配率,而100 mmol·L~(-1)单、双侧处理降低了多年生蔓的碳分配率。【结论】与均匀盐处理相比,同浓度单侧盐处理对葡萄植株的伤害程度较轻。盐处理侧根系吸收的Na~+可运输到非处理侧根系,进而排出体外,降低叶片Na~+积累水平。非处理侧根系能缓解盐胁迫导致的叶片和根系碳、氮分配率的下降。
        【Objective】 Salt stress seriously affects yield and fruit quality of fruit crops. Soil salinity is often heterogeneous in saline fields, and within the different root zones of single plant the salinity of the soil solution might vary widely. This paper was aimed to determine the injury extent of grapevine under the non-uniform salt treatment, and to disclose the corresponding mechanism through the determination of Na~+ flux and allocation of carbon and nitrogen in grapevine. 【Method】 Saline environment of vine roots was controlled through split-root system and five treatments with different NaCl concentration(mmol·L~(-1)) were set: 0/0, 0/50,50/50, 0/100, and 100/100. Grapevine injury was evaluated via determining content of chlorophyll and malondialdehyde(MDA) as well as the changes of chlorophyll fluorescence parameters. Na~+ transport was analyzed by the determination of Na~+ content, Na~+flux and electrical conductivity of culture medium around roots. Nitrogen utilization efficiency and distribution rate of carbon and nitrogen were used to detect the changes of carbon and nitrogen in different tissues under different treatments.【Result】The uniform salt treatment of bilateral roots significantly reduced the content of chlorophyll and enhanced the MDA levels in roots and leaves at 15 and 30 days after treatment. In contrast, salt treatment of local roots alleviated the chlorophyll decrease and the MDA accumulation. Additionally, the determination of chlorophyll fluorescence parameters, such as Fv/Fm and ERT, showed the similar results. Therefore, the roots in the non-saline side could alleviate the grapevine injury in comparison to the uniform salt treatments.All of salt treatments increased Na~+ content in roots and leaves to varying extents at 15 days after treatment; particularly, the Na~+content of the roots in the non-saline side was also enhanced; additionally, local root zone salinity significantly decreased the Na~+content in leaves, and local treatment of 100 mmol·L~(-1) NaCl significantly reduced the Na~+ content in saline side roots, compared to the uniform NaCl treatment. The Na~+ efflux was observed in non-treated roots, however, the Na~+ flux was reversed to influx in the non-saline side roots under non-uniform salt treatment. Additionally, the electrical conductivity of the culture medium around the roots in the non-saline side was significantly enhanced. Therefore, the Na~+ absorbed from the salt-treated side could be transported to the non-saline side roots and thereby expelled out of the roots. Nitrogen utilization efficiency was significantly reduced by the uniform salt treatment and the decline was associated with salt treatment concentration. In contrast, the non-uniform salt treatment alleviated the declines in nitrogen utilization efficiency and particularly, which was significantly enhanced in the non-saline side roots under the 0/100 mmol·L~(-1) treatment. The uniform salt treatments and particularly 100 mmol·L~(-1) NaCl decreased the distribution rate of nitrogen in roots and leaves and increased the values in the two-year-old shoots, favoring the storage of nitrogen. In contrast,the non-saline side roots alleviated the declines of nitrogen distribution rate in roots and leaves. The uniform salt treatment decreased carbon distribution rate in leaves and roots; in contrast, the non-saline side roots not only alleviated the declines of carbon distribution rate in leaves but also elevated carbon distribution rate in roots. It was noteworthy that 50 and 100 mmol·L~(-1) Na Cl treatments imparted different effects on carbon distribution in new shoots and two-year-old shoots, i.e., the uniform and non-uniform treatments of 50 mmol·L~(-1) NaCl enhanced carbon distribution in the two-year-old shoots while the treatments of 100 mmol·L~(-1) NaCl produced the contrary results.【Conclusion】Compared with the uniform salt treatment, NaCl treatment of local roots produced the lesser injury for grapevines. Na~+ absorbed from the salt-treated side was transported to the non-treated side, expelled them from the roots, and thereby reduced Na~+ accumulation in leaves. The non-saline side roots alleviated the declines in carbon and nitrogen distribution rate of leaves and roots.
引文
[1]MUNNS R,TESTER M.Mechanisms of salinity tolerance.Annual Review of Plant Biology,2008,59:651-681.
    [2]HARIADI Y,MARANDON K,TIAN Y,JACOBSEN S E,SHABALA S.Ionic and osmotic relations in quinoa(Chenopodium quinoa Willd.)plants grown at various salinity levels.Journal of Experimental Botany,2011,62:185-193.
    [3]BERTHOMIEU P,CONéJéRO G,NUBLAT A,BRACKENBURY WJ,LAMBERT C,SAVIO C,UOZUMI N,OIKI S,TAMADA K,CELLIER F,GOSTI F,SIMONNEAU T,ESSAH P A,TESTER M,VéRY A,SENTENAC H,CASSE F.Functional analysis of AtHKT1in Arabidopsis shows that Na+recirculation by the phloem is crucial for salt tolerance.EMBO Journal,2003,22:2004-2014.
    [4]SUN J,CHEN S L,DAI S X,WANG R G,LI N Y,SHEN X,ZHOUX Y,LU K F,ZHENG S J,HU Z M,ZHANG Z K,SONG J,XU Y.Na Cl-induced alternations of cellular and tissue ion fluxes in roots of salt resistant and salt-sensitive poplar species.Plant Physiology,2009,149:1141-1153.
    [5]SULLIVAN P F.Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska:Reply.Ecology,2016,97(3):803-808.
    [6]徐晨,刘晓龙,李前,凌凤楼,武志海,张志安.供氮水平对盐胁迫下水稻叶片光合及叶绿素荧光特性的影响.植物学报,2018,53(2):185-195.XU C,LIU X L,LI Q,LING F L,WU Z H,ZHANG Z A.Effect of salt stress on photosynthesis and chlorophyll fluorescence characteristics of rice leaf for nitrogen levels.Chinese Bulletin of Botany,2018,53(2):185-195.(in Chinese)
    [7]MUNNS R,JAMES R A,LAUCHLI A.Approaches to increasing the salt tolerance of wheat and other cereals.Journal of Experimental Botany,2006,57:1025-1043.
    [8]KU?NIAK E,KORNAS A,GABARA B,ULLRICH C,SKLODOWSKA M,MISZALSKI Z.Interaction of Botrytis cinerea with the intermediate C3-CAM plant Mesembryanthemum crystallinum.Environmental and Experimental Botany,2010,69:137-147.
    [9]CHOJAK-KO?NIEWSKA J,KU?NIAK E,LINKIEWICZ A,SOWAS.Primary carbon metabolism-related changes in cucumber exposed to single and sequential treatments with salt stress and bacterial infection.Plant Physiology and Biochemistry,2018,123:160-169.
    [10]KONG X Q,LUO Z,DONG HZ,ENEJI A E,LI W J.H2O2 and ABAsignaling are responsible for the increased Na+efflux and water uptake in Gossypium hirsutum L.roots in the non-saline side under non-uniform root zone salinity.Journal of Experimental Botany,2016,67(8):2247-2261.
    [11]BAZIHIZINA N,BARRETT-LENNARD E G,COLMER T D.Plant responses to heterogeneous salinity:Growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone.Journal of Experimental Botany,2012,63:6347-6358.
    [12]赵世杰,史国安,董新纯.植物生理实验学指导.北京:中国农业科学技术出版社,2002.ZHAO S J,SHI G A,DONG X C.Techniques of Plant Physiological Experiment.Beijing:China Agricultural Science and Technology Press,2002.(in Chinese)
    [13]彭春雪,耿贵,砖丽华,杨云,邱植,孙菲,孙学伟,赵慧杰.不同浓度钠对甜菜生长及生理特性的影响.植物营养与肥料学报,2014,20(2):459-465.PENG C X,GENG G,ZHUAN L H,YANG Y,QIU Z,SUN F,SUN XW,ZHAO H J.Effects of different Na+concentrations on growth and physiological traits of sugar beet.Journal of Plant Nutrition and Fertilizers,2014,20(2):459-465.(in Chinese)
    [14]孙璐,周宇飞,李丰先,肖木辑,陶冶,许文娟,黄瑞冬.盐胁迫对高粱幼苗光合作用和荧光特性的影响.中国农业科学,2012,45(16):3265-3272.SUN L,ZHOU Y F,LI F X,XIAO M J,TAO Y,XU W J,HUANG RD.Impacts of salt stress on characteristics of photosynthesis and chlorophyll fluorescence of sorghum seedlings.Scientia Agricultura Sinica,2012,45(16):3265-3272.(in Chinese)
    [15]胡文海,喻景权.低温弱光对番茄叶片光合作用和叶绿素荧光参数的影响.园艺学报,2001,28(1):41-46.HU W H,YU J Q.Effects of chilling under low light on photosynthesis and chlorophyll fluorescence characteristic in tomato leaves.Acta Horticulturae Sinica,2001,28(1):41-46.(in Chinese)
    [16]KONG X Q,LUO Z,DONG H Z,ENEJI A E,LI W J.Effects of non-uniform root zone salinity on water use,Na+recirculation,and Na+and H+flux in cotton.Journal of Experimental Botany,2012,63:2105-2116.
    [17]WEST D W.Water use and sodium chloride uptake by apple trees.II.The response to soil oxygen deficiency.Plant and Soil,1978,50:51-65.
    [18]MUNNS R.Comparative physiology of salt and water stress.Plant,Cell and Environment,2002,25:239-250.
    [19]DEGARIS K A,WALKER R R,LOVEYS B R,TYERMAN S D.Exogenous application of abscisic acid to root systems of grapevines with or without salinity influences water relations and ion allocation.Australian Journal of Grape and Wine Research,2017,23:66-76.
    [20]SAXENA I,SRIKANTH S,CHEN Z.Cross talk between H2O2 and interacting signal molecules under plant stress response.Frontiers in Plant Science,2016,7:570.
    [21]WANG X P,BAI T C,ZHI J H,LI Z Y.Effects of salt water drip irrigation on jujube roots soil available nitrogen distribution:Asecurity assurance perspective.International Journal of Security and Its Applications,2016,10(2):267-278.
    [22]PARDO J M.Biotechnology of water and salinity stress tolerance.Current Opinion in Biotechnology,2010,21(2):185-196.
    [23]BAZIHIZINA N,COLMER T D,BARRETT-LENNARD E G.Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia:growth,photosynthesis,water relations and tissue ion concentrations.Annals of Botany,2009,104:737-745.
    [24]XU J W,HUANG X,LAN H X,ZHANG H S,HUANG J.Rearrangement of nitrogen metabolism in rice(Oryza sativa L.)under salt stress.Plant Signaling&Behavior,2016,11(3):e1138194.
    [25]马晓东,钟小莉,桑钰.干旱胁迫下胡杨实生幼苗氮素吸收分配与利用.生态学报,2018,38(20):1-11.MA X D,ZHONG X L,SANG Y.Characteristics of nitrogen absorption,distribution,and utilization by Populus euphratica seedlings under drought stress.Acta Ecologica Sinica,2018,38(20):1-11.(in Chinese)
    [26]AHANGER M A,AGARWAL R M.Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat(Triticum aestivum L)as influenced by potassium supplementation.Plant Physiology and Biochemistry,2017,115:449-460.
    [27]IQBAL N,UMAR S,KHAN N A.Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard(Brassica juncea).Journal of Plant Physiology,2015,178(15):84-91.
    [28]RICHTER J A,ERBAN A,KOPKA J,ZORB C.Metabolic contribution to salt stress in two maize hybrids with contrasting resistance.Plant Science,2015,233:107-115.
    [29]HELLMANN H,FUNCK D,RENTSCH D,FROMMER W.Hypersensitivity of an arabidopsis sugar signaling mutant toward exogenous proline application.Plant Physiology,2000,123:779-790.
    [30]FU J,WANG Y F,LIU Z H,LI Z T,YANG K J.Trichoderma asperellum alleviates the effects of saline-alkaline stress on maize seedlings via the regulation of photosynthesis and nitrogen metabolism.Plant Growth Regulation,2018,85:363-374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700