盾构隧道与周围土体在列车振动荷载作用下的动力响应特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic response of shield tunnels and surrounding soil induced by train vibration
  • 作者:杨文波 ; 陈子全 ; 徐朝阳 ; 晏启祥 ; 何川 ; 韦凯
  • 英文作者:YANG Wen-bo;CHEN Zi-quan;XU Zhao-yang;YAN Qi-xiang;HE Chuan;WEI Kai;Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University;School of Civil Engineering, Southwest Jiaotong University;Key Laboratory of High-Speed Railway Engineering of Ministry of Education, Southwest Jiaotong University;
  • 关键词:盾构隧道 ; 振动荷载 ; 动力响应 ; 频率响应函数FRF ; 隧道衬砌结构 ; 隧道周围土体
  • 英文关键词:shield tunnels;;vibration load;;dynamic response;;frequency response function;;tunnel lining;;soil
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:西南交通大学交通隧道工程教育部重点实验室;西南交通大学土木工程学院;西南交通大学高速铁路线路工程教育部重点实验室;
  • 出版日期:2017-12-04 15:12
  • 出版单位:岩土力学
  • 年:2018
  • 期:v.39;No.285
  • 基金:国家自然科学基金资助项目(No.51408494,No.51278425,No.51408326);; 中央高校基本科研业务费专项资金资助(No.2682015CX092)~~
  • 语种:中文;
  • 页:YTLX201802017
  • 页数:9
  • CN:02
  • ISSN:42-1199/O3
  • 分类号:146-154
摘要
为研究列车振动荷载作用下盾构隧道结构及周围土体的动力响应特性,采用模型试验方法,通过布置在盾构隧道底部的激振器施加扫频激振荷载和列车振动荷载,采用频率响应函数FRF与最大加速度分析了盾构隧道衬砌结构与周围土体不同位置处的动力响应及其衰减规律。研究结果表明:FRF是隧道衬砌结构和周围土体自身的动力响应特性的体现,与激振力的大小、扫频方向及扫频时间无关;在隧道管片衬砌结构的底部和顶部均体现出高频响应大于低频响应的特性,隧道顶部加速度响应沿隧道纵向衰减幅度明显小于隧道底部;隧道周围土体的动力响应沿深度有明显变化,但均表现出沿隧道轴向衰减的规律。隧道结构上部第1层测点土体的动力响应在全频域内随频率的增加逐渐增大。但在第2层和地表的第3层测点,土体的动力响应在30~90 Hz区段线性增长,在90~300 Hz区段出现波动变化,并无明显增大趋势;与扫频激振荷载引起的动力响应规律一致,由列车运行振动荷载引起的隧道管片衬砌结构和周围土体的振动沿隧道轴向逐渐衰减,隧道底部的加速度响应大于顶部,随着列车车速的增大,在隧道内部引起的加速度响应将显著增大。同时,在列车振动荷载作用下发现地表存在加速度放大效应,地表第3层测点的加速度响应均大于隧道结构上部第1层测点。
        To investigate dynamic behaviour of shield tunnels and surrounding soil, a physical model test was conducted. An electromagnetic shaker located at the bottom of the shield tunnel was used to apply sweep excitation and train vibration load. The data of accelerometers are applied to calculate the frequency response function(FRF) and the maximum acceleration of the tunnel and soil. It is found that FRF is insensitive to the excitation amplitude, sweep direction and period, which represents dynamic characteristics of tunnel lining structure and surrounding soil. The results also show that the high-frequency response is greater than the low-frequency response at the tunnel lining. The attenuation of dynamic response along the longitudinal direction of the tunnel is obviously faster at the tunnel invert comparing to at the tunnel apex. For surrounding soil, a variety of dynamic response with depth is observed. A clear degradation of soil response along the longitudinal direction of the tunnel is found at all depths. The soil response increases with the increase of excitation frequency at the first measurement layer above the tunnel lining. However, at the second and third measurement layer, soil response increases linearly at the frequency of 30-90 Hz. At higher frequency range, soil response does not show a clear increasing trend with frequency. The dynamic response under train-vibration load is consistent with sweep excitation load. Both tunnel and soil responses decrease in the longitudinal direction. Tunnel response at the tunnel invert is larger than that at the tunnel apex. With the increase of the train speed, tunnel and soil responses are significantly amplified. It is also found that the soil responses at the free surface are more significant than the soil responses inside the soil layer from train induced vibration.
引文
[1]王祥秋,杨林德,周治国.列车振动荷载作用下隧道衬砌结构动力响应特性分析[J].岩石力学与工程学报,2006,25(7):1337-1342.WANG Xiang-qiu,YANG Lin-de,ZHOU Zhi-guo.Dynamic response analysis of lining structures for tunnel under vibration loads of train[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(7):1337-1342.
    [2]王田友,丁洁民,楼梦麟,等.地铁运行所致建筑物振动的传播规律的影响[J].土木工程学报,2009,42(5):33-39.WANG Tian-you,DING Jie-min,LOU Meng-lin,et al.Subway-induced building vibration and its propagation[J].China Civil Engineering Journal,2009,42(5):33-39.
    [3]THUSYANTHAN N I,MADABHUSHI S P G.Experimental study of vibrations in underground structures[J].Geotechnical Engineering,2003,156(2):75-81.
    [4]刘维宁,袁扬,王文斌,等.地铁列车运行引起环境振动响应的人工单点列脉冲激励预测方法[J].中国铁道科学,2015,35(4):74-79.LIU Wei-ning,YUAN Yang,WANG Wen-bin,et al.Prediction method with artificial single-point pulse excitations for environment vibration response induced by in-service metro train[J].China Railway Science,2015,35(4):74-79.
    [5]范思婷,刘干斌,黄力,等.轨道交通运行引起的隧道结构振动测试研究[J].土木工程学报,2015,48(增刊2):298-303.FAN Si-ting,LIU Gan-bin,HUANG Li,et al.Testing study of tunnel structure vibration induced by rail transit[J].China Civil Engineering Journal,2015,48(Supp.2):298-303.
    [6]吴宗臻,刘维宁,马龙祥,等.基于实测频响函数列的地铁环境振动响应预测方法[J].防灾减灾工程学报,2015,32(6):155-161.WU Zong-zhen,LIU Wei-ning,MA Long-xiang,et al.Prediction method for metro environment vibrations based on measured frequency response functions field[J].Engineering mechanics,2015,32(6):155-161.
    [7]YANG W,HUSSEIN M F M,MARSHALL A M.Centrifuge and numerical modelling of ground-borne vibration from an underground tunnel[J].Soil Dynamics and Earthquake Engineering,2013,(51):23-34.
    [8]楼梦麟,贾旭鹏,俞洁勤.地铁运行引起的地面振动实测及传播规律分析[J].防灾减灾工程学报,2009,29(3):282-288.LOU Meng-lin,JIA Xu-peng,YU Jie-qin.Field measurement and analysis of ground Vibration Induced by subway trains[J].Journal of Disaster Prevention and Mitigation Engineering,2009,29(3):282-288.
    [9]李亮,张丙强,杨小礼.高速列车振动荷载下大断面隧道结构动力响应分析[J].岩石力学与工程学报,2005,24(23):4259-4265.LI Liang,ZHANG Bing-qiang,YANG Xiao-li.Analysis of dynamic response of large cross-section tunnel under vibrating load induced by high speed train[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(23):4259-4265.
    [10]莫海鸿,邓飞皇,王军辉.运营期地铁盾构隧道动力响应分析[J].岩石力学与工程学报,2006,25(2):3508-3512.MO Hai-hong,DENG Fei-huang,WANG Jun-hui.Analysis of dynamic responses of shield tunnel during metro operation[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(2):3508-3512.
    [11]何川,封坤,杨雄.南京长江隧道超大断面管片衬砌结构体的相似模型试验研究[J].岩石力学与工程学报,2007,26(11):2260-2269.HE Chuan,FENG Kun,YANG Xiong.Model test on segmental lining of Nanjing Yangtze River tunnel with super-large cross-section[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(11):2260-2269.
    [12]张厚美,过迟,付德明.圆形隧道装配式衬砌接头刚度模型研究[J].岩土工程学报,2000,22(3):309-314.ZHANG Hou-mei,GUO Chi,FU De-ming.A study on the stiffness model of circular tunnel prefabricated lining[J].Chinese Journal of Geotechnical Engineering,2000,22(3):309-314.
    [13]地盘工学会.シールドトンネルの新技術[M].东京:鹿岛出版社,1997.Japanese Geotechnical Society.The new technology of shield tunnel[M].Tokyo:Kashima Institute Publishing Co.,Ltd.,1997.
    [14]PAK R Y S,GUZINA B B.Dynamic characterization of vertically loaded foundations on granular soils[J].Journal of Geotechnical Engineering,1990,121(3):274-286.
    [15]TSUNO K,MORIMOTO W,ITOH K,et al.Centrifugal modelling of subway-induced vibration[J].International Journal of Physical Modelling in Geotechnics,2005,5(4):15-26.
    [16]ZHAI W M,WANG K Y,CAI C B.Fundamentals of vehicle-track coupled dynamics[J].Vehicle System Dynamics,2009,47(11):1349-1376.
    [17]韦凯,翟婉明,肖军华.软土地铁盾构隧道垂向随机振动分析模型[J].工程力学,2014,31(6):117-123.WEI Kai,ZHAI Wan-ming,XIAO Jun-hua.Vertical random vibration model for subway shield tunnel in soft soil[J].Engineering Mechanics,2014,31(6):117-123.
    [18]WEI Kai,WANG Ping,YANG Fan,et al.The effect of the frequency-dependent stiffness of rail pad on environment vibration induced by subway in tunnel[J].Journal of Rail and Rapid Transit,2016,230(3):697-708.
    [19]International Organization for Standardization.BS ISO14837-1:2005 Mechanical vibration-ground-borne noise and vibration arising from rail systems[S].Geneva:ISO Copyright Office,2005.
    [20]ISHIHARA K.Soil behaviour in earthquake geotechnics[D].Oxford:Oxford University,1996.
    [21]闫维明,聂晗,任珉,等.地铁交通引起地面振动的实测与分析[J].铁道科学与工程学报,2006,3(2):1-5.YAN Wei-ming,NIE Han,REN Min,et al.In situ experiment and analysis of ground surface vibration induced by urban subway transit[J].Journal of Railway Science and Engineering,2006,3(2):1-5.
    [22]马蒙,刘维宁,王文斌.轨道交通地表振动局部放大现象成因分析[J].工程力学,2013,30(4):275-309.MA Meng,LIU Wei-ning,WANG Wen-bin.Analysis on the reasons of ground vibration amplification induced by railway traffic[J].Engineering Mechanics,2013,30(4):275-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700