钼酸铵中硅检测现状研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:SILICON DETECTION OF AMMONIUM MOLYBDATE
  • 作者:加明 ; 刘锦锐 ; 周春燕
  • 英文作者:JIA Ming;LIU Jin-rui;ZHOU Chun-yan;Chengdu Hongbo Molybdenum Co.,Ltd.;
  • 关键词:钼酸铵 ; 钼蓝光度法 ; 光谱法(直流电弧粉末法) ; ICP-OES法 ; ICP-MS法 ; GD-MS法 ; 石墨炉原子吸收光谱法
  • 英文关键词:ammonium molybdate;;molybdenum blue photometry;;spectral method(DC arc powder method);;ICP-OES method;;ICP-MS method;;GD-MS method;;graphite furnace atomic absorption spectrometry
  • 中文刊名:ZGMY
  • 英文刊名:China Molybdenum Industry
  • 机构:成都虹波钼业有限责任公司;
  • 出版日期:2019-03-04 15:39
  • 出版单位:中国钼业
  • 年:2019
  • 期:v.43;No.203
  • 语种:中文;
  • 页:ZGMY201901011
  • 页数:6
  • CN:01
  • ISSN:61-1238/TF
  • 分类号:33-38
摘要
在钼酸铵生产过程中,硅作为杂质元素存在于产品中,对钼产品的后续加工产生重大影响。目前对钼酸铵中硅的检测方法有钼蓝光度法、光谱法(直流电弧粉末法)、ICP-OES法、ICP-MS法、GD-MS法、石墨炉法。本文综述了以上几种检测方法,分析了其优缺点,展望钼酸铵中硅检测技术的发展前景。
        In the process of production of ammonium molybdate,silicon is an impurity element in the product,which has a great influence on the subsequent processing of molybdenum products. At present,there are molybdenum blue photometric method,spectroscopic method( DC arc powder method),ICP-OES method,ICP-MS method,GD-MS method and graphite furnace method for the detection of silicon in ammonium molybdate. In this paper,the above methods are reviewed,their advantages and disadvantages are analyzed,and the prospects for the development of silicon detection technology in ammonium molybdate are discussed.
引文
[1]将丽娟,刘燕,张文钲,等. 2012年钼业年评[J].中国钼业,2013,37(1):1-7.
    [2] GB/T 4325. 12-1984氯化-钼蓝光度法测定硅量[S].
    [3] American Society for Testing and Materials standard(ASTM). Methods for Chemical Analysis of Molybdenum,AST-ME315-1999[S].
    [4] Kousaburo O,Hitoshi K,Katsumi Y. Simulaneous kinetic determination of phosphate and silicate based on heteropoly blue formation[J]. Anal Chim Acta,1979. 111:301-306.
    [5] Yamamoto N,Soejima S,Harada M. Photometric determination of silicon in vanadium by MIBK extraction and molybdenum blue method[J]. Bunseki Kagaku,1970,19(2):236-238.
    [6]谢斌,桂林.钼酸铵中硅的比色测定[J].中国钼业,1994,18(4):43-45.
    [7]傅志伟.硅钼蓝-罗丹明B离子缔合结合物分光光度法测定纯钼中痕量硅[J].上海有色金属,1997,18(1):40-43.
    [8] YS/T 558-2009钼的发射光谱分析法[S].
    [9]袁建新,张庆莲.发射光谱法测定钼酸铵中的钨量[J].西部探矿工程,2009(增刊):116-119.
    [10]邱如斌.高纯三氧化钨中20种痕量杂质元素的光谱分析[J].龙岩学院学报,2005(3):97-99.
    [11]蒋福生,林华煦.高纯钼中痕量杂质元素的光谱分析[J].分析试验室,1983(3):47-49.
    [12] Olesik J W. Elemental analysis using ICP-OES and ICP/MS[J]. Analytical Chemistry,1991,63(1):187-192.
    [13]王立新,王烽,曹吉祥,等.冶金仪器分析技术与应用[M].北京:化学工业出版社,2010:170-179.
    [14] GB/T 4325. 12-2013电感耦合等离子体原子发射光谱法硅量的测定[S].
    [15] Krivan V,Theimer K H. Trace characterization of highpurity molybdenum and tungsten by electrothermal atomic absorption spectrometry,inductively coupled plasma atomic emission spectrometry,inductively coupled plasma mass spectrometry and total reflection X-ray fluorescence spectrometry involving analyte—matrix separation[J]. Spectrochimica Acta Part B Atomic Spectroscopy,1997,52(14):2061-2076.
    [16] Hasegawa S,Yamaguchi H,Yamada K,et al. Determination of trace elements in high-purity molybdenum by solid-phase extraction/ICP-MS[J]. Materials Transactions,2004,45(3):925-929.
    [17]张遴,赵收创,何学文. ICP-AES法测定钼酸铵及多钼酸铵中14个杂质元素[J].理化检验-化学分册,2004,40(9):533-535.
    [18]郑洪涛,汤志勇,黄晓胜,等. ICP-AES测定纯三氧化钼和钼酸铵中的痕量元素[J].中国钼业,2007,31(4):23-24.
    [19] Wilhartiz P,Dreer S,Krismer R. High performance utra trace analysis in molybdenum and tungsten accomplished by on—line coupling of ion chromatography with simultaneous ICP—AES[J]. Mikrochimica Acta,1997(125):45-52.
    [20] Robert Thomas. Practical Guide to ICP-MS[M]. New York:Marcel Dekker Inc,2004:1-30.
    [21]赵虎生,邵鸿翔.电感耦合等离子体质谱原理与应用[M].北京:化学工业出版社,2007:1-28.
    [22]黄冬根,廖世军,党志,等. ICP-MS法测定钼铁中Sb,Cu,Sn,Si,P元素的研究[J].广东有色金属学报,2005,15(4):20-24.
    [23]任志海,夏照明,李树强.电感耦合等离子体质谱法(ICP-MS)测定钼矿石中的铼[J].中国无机分析化学,2013,3(3):27-29.
    [24]王长华,李继东,潘元海.电感耦合等离子体质谱法测定高纯钼中12种杂质元素[J].分析实验室,2011,30(7):18-21.
    [25] Jarrett J M,Xiao G,Caldwell K L,et al. Eliminating molybdenum oxide interference inurine cadmium biomonitoring using ICP-DRC-MS[J]. Journal of Analytical Atomic Spectrometry,2008,23(7):962-967.
    [26] Bandura D R,Baranov V I,Tanner S D. Reaction chemistry and collisional processes in multiple devices for resolving isobaric interferences in ICP-MS[J]. Fresenius Journal of Analytical Chemistry,2001,370(5):454-470.
    [27] Liu H T,Jiang S J. Dynamic reaction cell inductively coupled plasma mass spectrometry for determination of silicon in steel[J]. Spectrochimica Acta Part B Atomic Spectroscopy,2003,58(1):153-157.
    [28]李冰,胡静宇,赵墨田.碰撞/反应池ICP-MS性能及应用进展[J].质谱学报,2010(01):7-17.
    [29] Volker H,Martin K,Peter K R,et al. Glowdischarge mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2005,381:173-188.
    [30]刘咸德.用辉光放电质谱法和火花源质谱法分析表征金属和半导体[J].质谱学报,1995,17(3):7-16.
    [31]唐利斌,荣百炼,姬荣斌.高纯碲中杂质的辉光放电质谱分析[J].质谱学报,2004,25(10):17-18.
    [32]陈刚,葛爱景,卓尚军,等.高纯钽的辉光放电质谱多元素分析[J].质谱学报,2007,28(1):36-39.
    [33]荣百炼,普朝光,姬荣斌.辉光放电质谱法测定高纯锑中的痕量杂质元素[J].质谱学报,2004,25(2):96-97.
    [34]普朝光,肖绍泽,张震.辉光放电质谱仪测定超纯锗中23种痕量杂质元素[J].质谱学报,1996,18(4):67-70.
    [35]荣百炼,胡赞东,丛树仁,等.高纯碲和镉中痕量杂质元素的辉光放电质谱分析[J].红外技术,2010,32(4):226-230.
    [36]张肇瑞.高纯钼、钛分析方法的研究[D].北京有色金属研究总院,2012.
    [37]李宝城.高纯铌、铋、钨的辉光放电质谱多元素分析[D].北京有色金属研究总院,2012.
    [38] Adams F,Gijbels R,Grieken R V. Inorganic Mass Spectrometry[M]New York:John Wiley&Sons,1988.
    [39] Volker H,Martin K,Peter K R,et al. Glowdischarge mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2005,381:173-188.
    [40] Jr C D Q,Castro J,Marcus R K. Glow discharge mass spectrometry[J]. Encyclopedia of Spectroscopy&Spectrometry,2010,58(2):762-769.
    [41]徐常昆,周涛,赵永刚.辉光放电质谱应用和定量分析[J].岩矿测试,2012(1):57-66.
    [42]荣百炼,郑云,唐利斌,等.辉光放电质谱法中干扰峰的分析研究[J].质谱学报,2006,27(增刊):25-26.
    [43] Inoue M,Saka T. Elemental analysis of powders by glow discharge mass spectrometry[J]. Analytica Chimica Acta,1999,395(1–2):165-171.
    [44]程肖玲,杭纬,黄本立.辉光放电质谱技术应用进展[J].中国科学:化学,2014(5):10-15.
    [45]余兴,李小佳,王海舟。辉光放电质谱分析中质谱干扰及其校正方法的现状[J].理化检验(化学分册),2010(2):105-109
    [46] Saito M. Determination of trace amounts of impurities in molybdenum by spark source and glow discharge mass spectrometry[J]. Journal of the Japan Institute of Metals,1994,58(2):188-193.
    [47] Holcombe J A,Borges D L G. Graphite furnace atomic absorption spectrometry[J]. Encyclopedia of Analytical Chemistry,2004,52(1):167-176.
    [48] Sturgeon R E,Chakrabarti C L,Langford C H. Studies on the mechanism of atom formation in graphite furnace atomic absorption spectrometry[J]. Analytical Chemistry,1976,48(12):1792-1807.
    [49] Muellervogt G,Wendl W. Reaction kinetics in the determination of silicon by graphite furnace atomic absorption spectrometry[J]. Analytical Chemistry,1981,53(4):651-653.
    [50] Matsusaki K,Yamaguchi T,Sata T. Determination of silicon by atomic absorption spectrometry using a graphite furnace coated with tungsten carbide[J]. Technology Reports of the Yamaguchi University,1996(5):305-311.
    [51] Brown A A,Lee M. Peak profile and appearance times using totally pyrolytic cuvettes in graphite furnace atomic absorption spectrometry[J]. Fresenius Zeitschrift Fur Analytische Chemie,1986,323(7):697-702.
    [52]谢明明,崔玉青,王峰,等.石墨炉原子吸收光谱法测定钼中的铅含量[J].中国钼业,2013,37(5):41-44.
    [53]严慰章,张泰松.石墨炉原子吸收光谱法测定三氧化钨和钨酸中微量铝和镉[J].分析实验室,1983(4):7-9.
    [54]闻莺,刘世良,高介平.石墨炉原子吸收光谱法测定高纯阴极铜中痕量硅的研究[J].冶金分析,2003,23(4):18-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700