金属材料激光增材制造气氛保护系统
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Atmosphere Protection System for Metal Material Laser Additive Manufacturing
  • 作者:刘仁洪 ; 龚运环 ; 陈波
  • 英文作者:Liu Renhong;Gong Yunhuan;Chen Bo;Intelligent Manufacturing Technology Center,Automation Research Institute of China South Industries Group Corporation;
  • 关键词:激光增材制造 ; 气氛保护系统 ; 真空技术 ; 氧、水含量
  • 英文关键词:laser additive manufacturing;;atmosphere protection system;;vacuum technique;;oxygen & water content
  • 中文刊名:BGZD
  • 英文刊名:Ordnance Industry Automation
  • 机构:中国兵器装备集团自动化研究所智能制造技术中心;
  • 出版日期:2018-08-15
  • 出版单位:兵工自动化
  • 年:2018
  • 期:v.37;No.238
  • 基金:四川省重点研发计划项目(16ZC2582)
  • 语种:中文;
  • 页:BGZD201808004
  • 页数:4
  • CN:08
  • ISSN:51-1419/TP
  • 分类号:19-21+27
摘要
为满足高性能金属材料激光增材制造对稳定气氛环境的需求,对大型送粉式激光增材制造设备中的大容器气氛保护环境系统进行设计与研究。结合传统的惰性气体环境形成特点,设计金属材料激光增材制造气氛保护环境系统,用ANSYS软件对系统的核心部件进行了稳定性、可靠性模拟计算分析,同时优化了惰性气体环境形成的工艺过程,并进行实验测试验证。验证结果表明:该系统大幅提高了气氛保护环境的形成效率,降低了使用成本,突破了大容积气氛保护环境快速形成与保持技术,可为后续的高性能金属构件成形工艺研究提供快速、稳定的惰性气体环境。
        For meeting requirements of high performance metal material laser additive manufacturing for stable atmosphere requirements, design and research on large-scale atmosphere protection environment system in large-scale powder-feeding laser additive manufacturing equipment. Based on the characteristics of the traditional inert gas environment, design the metal material laser additive manufacturing atmosphere protection environment system, use ANSYS software to carry out table and reliable simulation calculation analysis on system core, and optimize the technique process of inert gas environment formation and verify it by test. The verification test results show that the system can greatly improve the formation efficiency, decrease the cost, and improve the large-scale atmosphere protection environment fast formation and protection technology, which provides a fast and stable inert gas environment for the research of the forming process of high-performance metal material laser additive manufacturing.
引文
[1]林鑫,黄卫东.高性能金属构件的激光增材制造[J].中国科学(信息科学),2015(9):1111-1126.
    [2]王华明.高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报,2014,35(10):2690-2698.
    [3]ARCELLA F G,FROES F H.Producing titanium aerospace components from powder using forming[J].Journal of Metals,2000,52(5):28-30.
    [4]HOFMEISTER W,GRIFFITH M.Solidification in direct metal deposition by LENS processing[J].Journal of Metals,2001,53(9):30-34.
    [5]田宗军,顾冬冬,沈理达,等.激光增材制造技术在航空航天领域的应用与发展[J].航空制造技术,2015,58(11):36-42.
    [6]ARCELLA F G,ABBOTT D,HOUSE M.Titanium alloy structures for airframe application by the laser forming process[C].Boston,American:Structures,Structure Dynamics,and Materials Conference and Exbibit,2013:71-73.
    [7]邵丹,胡兵,郑启光.激光先进制造技术与设备集成[M].北京:科学出版社,2009:50-67.
    [8]肖祥正,刘玉魁.真空设计手册[M].北京:国防工业出版社,2004:80-96.
    [9]DING Y,WARYON J,KOVACEVIC R.Development of sensing and control system for robotized laser-based direct metal addition system[J].Additive Manufacturing,2016,10(6):24-35.
    [10]陈波.送粉式激光3D打印数据采集与监控系统的设计与实验[J].电子设计工程,2017,25(4):66-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700