热残余应力对考虑微观孔隙碳纤维增强环氧树脂复合材料横向拉伸性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of thermal residual stress on transverse tensile strength of unidirectional carbon fiber reinforced epoxy composites considering void
  • 作者:王猛 ; 郭飞 ; 于静巍 ; 张培伟 ; 费庆国
  • 英文作者:WANG Meng;GUO Fei;YU Jingwei;ZHANG Peiwei;FEI Qingguo;Institute of Aerospace Machinery and Dynamics,Southeast University;Department of Engineering Mechanics,Southeast University;
  • 关键词:孔隙 ; 热残余应力 ; 复合材料 ; 代表性体积单元 ; 横向拉伸强度
  • 英文关键词:void;;thermal residual stress;;composites;;reprehensive volume element;;transverse tensile strength
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:东南大学空天机械动力学研究所;东南大学工程力学系;
  • 出版日期:2018-07-05 16:26
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(11602112;11572086);; 东南大学优秀博士学位论文培育基金(YBJJ1760);; 江苏省研究生科研与实践创新计划项目(KYLX16_0185)
  • 语种:中文;
  • 页:FUHE201905005
  • 页数:13
  • CN:05
  • ISSN:11-1801/TB
  • 分类号:45-57
摘要
为研究由于材料固化产生的热残余应力对碳纤维增强环氧树脂复合材料横向拉伸性能预测结果的影响,发展了一种基于摄动算法的纤维和孔洞随机分布代表性体积单元(RVE)生成方法,建立更加接近真实材料微观结构的RVE模型。通过施加周期性边界条件,并赋予组分(纤维、基体和界面)材料本构关系,进而实现温度和机械荷载下模型的热残余应力和损伤失效分析。从结果中发现,材料固化过程会在纤维之间产生残余压应力,在模型孔隙周围产生沿加载方向的残余拉应力。所建立不含孔隙RVE模型的失效均是由于界面脱黏引起,材料固化在纤维之间产生的残余压应力会增加模型的预测强度。含有孔隙的RVE模型失效起始于孔隙周围的基体中,而材料固化在模型孔隙周围产生的热残余拉应力对含孔隙RVE模型预测的失效强度有降低作用。对于具有不同孔隙尺寸的RVE模型,模型的失效强度随着孔隙尺寸的增加而不断降低,但是热残余应力减弱了孔隙尺寸对模型预测结果的降低作用。对于具有不同长宽比椭圆形孔隙的RVE模型,热残余应力增加了孔隙长宽比对模型强度的降低作用。
        To reveal the effects of manufacturing induced thermal residual stress(TRS)on the transverse tensile response prediction of carbon fiber reinforced epoxy composites,a representative volume element(RVE)generation method based on the random perturbation method was developed and RVE models which are more similar to the real microstructure were established.With periodical boundary conditions and the constitutive models of the constituents(fiber,matrix and interface),the thermal residual stress and progressive damage response of the models can be predicted under the thermal and mechanical loading conditions respectively.From the results,it can be found that the manufacturing process induces compressive stress in the matrix between two adjacent fibers and tensile stress around the voids along the loading direction.For the RVE models without voids,it is the interface debonding that contributes to the crack initiation and the thermal residual stress between two adjacent fibers increases the predicted strengths.The crack of the RVE models with voids all initiates from the matrix around the void and the manufacturing induced residual tensile stress around the void along the loading direction would contribute to the decrease of the predicted strengths from RVE models with voids.For the RVE models with different void sizes,with the increase of the void size,the failure strength decreases,and the thermal residual stress weakens the effects of void size on strength reduction.For the RVE models containing elliptical voids with different aspect ratios,the thermal residual stress would enhance the effects of aspect ratio on the strength reduction.
引文
[1]NAYA F,LOPES C S,GONZáLEZ C,et al.Numerical modelling of failure in advanced composite materials[M].Woodhead Publishing,2015.
    [2]YANG L,LI Z,SUN T,et al.Effects of gear-shape fibre on the transverse mechanical properties of unidirectional composites:Virtual material design by computational micromechanics[J].Applied Composite Materials,2017,24(5):1165-1178.
    [3]HERRáEZ M,GONZáLEZ C,LOPES C S,et al.Computational micromechanics evaluation of the effect of fibre shape on the transverse strength of unidirectional composites:An approach to virtual materials design[J].Composites Part A:Applied Science and Manufacturing,2016,91:484-492.
    [4]HUANG Y,JIN K K,HA S K.Effects of fiber arrangement on mechanical behavior of unidirectional composites[J].Journal of Composite Materials,2008,42(18):1851-1871.
    [5]MELRO A R,CAMANHO P P,PINHO S T.Generation of random distribution of fibres in long-fibre reinforced composites[J].Composites Science and Technology,2008,68(9):2092-2102.
    [6]YANG L,YAN Y,RAN Z,et al.A new method for generating random fibre distributions for fibre reinforced composites[J].Composites Science and Technology,2013,76:14-20.
    [7]VAUGHAN T J,MCCARTHY C T.A combined experimental-numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials[J].Composites Science and Technology,2010,70(2):291-297.
    [8]LUBACHEVSKY B D,STILLINGER F H.Geometric properties of random disk packings[J].Journal of Statistical Physics,1990,60(5-6):561-583.
    [9]ISMAIL Y,YANG D,YE J.Discrete element method for generating random fibre distributions in micromechanical models of fibre reinforced composite laminates[J].Composites Part B:Engineering,2016,90:485-492.
    [10]PATHAN M V,TAGARIELLI V L,PATSIAS S,et al.Anew algorithm to generate representative volume elements of composites with cylindrical or spherical fillers[J].Composites Part B:Engineering,2017,110:267-278.
    [11]WONGSTO A,LI S.Micromechanical FE analysis of UD fibre-reinforced composites with fibres distributed at random over the transverse cross-section[J].Composites Part A:Applied Science and Manufacturing,2005,36(9):1246-1266.
    [12]WANG Z,WANG X,ZHANG J,et al.Automatic generation of random distribution of fibers in long-fiber-reinforced composites and mesomechanical simulation[J].Materials&Design,2011,32(2):885-891.
    [13]BHEEMREDDY V,CHANDRASHEKHARA K,DHARA-NI L R,et al.Computational study of micromechanical damage behavior in continuous fiber-reinforced ceramic composites[J].Journal of Materials Science,2016,51(18):8610-8624.
    [14]SHANG Y B,SHI H J.Micromechanical analysis of stochastic fiber/matrix interface strength effect on transverse tensile property of fiber reinforced composites[J].Journal of Reinforced Plastics and Composites,2015,34(2):131-144.
    [15]WANG M,ZHANG P,FEI Q.Transverse properties prediction of polymer composites at high strain rates based on unit cell model[J].Journal of Aerospace Engineering,2017,31(2):04017102.
    [16]DONG C.Effects of process-induced voids on the properties of fibre reinforced composites[J].Journal of Materials Science&Technology,2016,32(7):597-604.
    [17]李波,赵美英,万小朋.孔隙微观特征对碳纤维/环氧树脂复合材料横向拉伸强度的影响[J].复合材料学报,2018,35(7):1864-1868.LI B,ZHAO M Y,WAN X P.Influence of void microcharacteristics on transverse tensile strength of unidirectional carbon fiber/epoxy resin composites[J].Acta Materiae Compositae Sinica,2018,35(7):1864-1868(in Chinese).
    [18]李波,赵美英,万小朋.不规则孔隙对复合材料横向拉伸力学性能的影响[J].复合材料学报,2019,36(2):356-361.LI B,ZHAO M Y,WAN X P.Influence of irregular-void on transverse tensile mechanical properties of composites[J].Acta Materiae Compositae Sinica,2019,36(2):356-361(in Chinese).
    [19]李波,万小朋,赵美英.孔隙率对复合材料单向板横向力学性能的影响[J].玻璃钢/复合材料,2017(6):33-38.LI B,WAN X P,ZHAO M Y.The influence of void contents on transverse mechanical properties of unidirectional composites[J].Fiber Reinforced Plastics/Composites,2017(6):33-38(in Chinese).
    [20]LI B,ZHAO M,WAN X.The influence of void distribution on transverse mechanical properties of unidirectional composites[C]//2017 8th International Conference on Mechanical and Aerospace Engineering(ICMAE).IEEE,2017:209-214.
    [21]杨雷,刘新,高东岳,等.考虑纤维随机分布的复合材料热残余应力分析及其对横向力学性能的影响[J].复合材料学报,2016,33(3):525-534.YANG L,LIU X,GAO D Y,et al.Analysis on thermal residual stress of composite with random fiber distribution and its effects on transverse mechanical peoperties[J].Acta Materiae Compositae Sinica,2016,33(3):525-534(in Chinese).
    [22]YANG L,YAN Y,MA J,et al.Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiberreinforced polymer-matrix composites[J].Computational Materials Science,2013,68:255-262.
    [23]NIKOPOUR H.A virtual frame work for predication of effect of voids on transverse elasticity of a unidirectionally reinforced composite[J].Computational Materials Science,2013,79:25-30.
    [24]VAJARI D A,GONZáLEZ C,LLORCA J,et al.A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional composites[J].Composites Science and Technology,2014,97:46-54.
    [25]HOJO M,MIZUNO M,HOBBIEBRUNKEN T,et al.Effect of fiber array irregularities on microscopic interfacial normal stress states of transversely loaded UD-CFRP from viewpoint of failure initiation[J].Composites Science and Technology,2009,69(11):1726-1734.
    [26]YANG L,LIU X,WU Z,et al.Effects of triangle-shape fiber on the transverse mechanical properties of unidirectional carbon fiber reinforced plastics[J].Composite Structures,2016,152:617-625.
    [27]LITTLE J E,YUAN X,JONES M I.Characterisation of voids in fibre reinforced composite materials[J].NDT&EInternational,2012,46:122-127.
    [28]HERNáNDEZ S,SKET F,MOLINA-ALDAREGUI J M,et al.Effect of curing cycle on void distribution and interlaminar shear strength in polymer-matrix composites[J].Composites Science and Technology,2011,71(10):1331-1341.
    [29]QI L,CHAO X,TIAN W,et al.Numerical study of the effects of irregular pores on transverse mechanical properties of unidirectional composites[J].Composites Science and Technology,2018,159:142-151.
    [30]OLIVIER P,COTTU J P,FERRET B.Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates[J].Composites,1995,26(7):509-515.
    [31]ZHU H,WU B,LI D,et al.Influence of voids on the tensile performance of carbon/epoxy fabric laminates[J].Journal of Materials Science&Technology,2011,27(1):69-73.
    [32]Dassault Systèmes.23.3.1Extended Drucker-Prager models[CP].Abaqus Analysis User’s Guide,Simulation Abaqus6.14documentation.
    [33]ZHANG Y,XIA Z,ELLYIN F.Evolution and influence of residual stresses/strains of fiber reinforced laminates[J].Composites Science and Technology,2004,64(10-11):1613-1621.
    [34]XIA Z,ZHANG Y,ELLYIN F.A unified periodical boundary conditions for representative volume elements of composites and applications[J].International Journal of Solids and Structures,2003,40(8):1907-1921.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700