准噶尔盆地南缘中二叠统页岩矿物学和地球化学特征及地质意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Mineralogy and Geochemistry of the middle Permian Lucaogou Formation Shales in the Southern Junggar Basin,Xinjiang Province and Its Geological significance
  • 作者:涂其军 ; 王刚
  • 英文作者:Tu Qijun;Wang Gang;Xinjiang Institute of Geological Survey;
  • 关键词:准噶尔盆地 ; 芦草沟组 ; 矿物学 ; 地球化学
  • 英文关键词:Junggar Basin;;Lucaogou Formation;;Mineralogy;;Geochemistry
  • 中文刊名:XJDI
  • 英文刊名:Xinjiang Geology
  • 机构:新疆维吾尔自治区地质调查院;
  • 出版日期:2018-12-15
  • 出版单位:新疆地质
  • 年:2018
  • 期:v.36;No.140
  • 基金:新疆维吾尔自治区地质调查院新疆准噶尔盆地南缘页岩气资源远景调查项目(12120114031901)资助
  • 语种:中文;
  • 页:XJDI201804008
  • 页数:8
  • CN:04
  • ISSN:65-1092/P
  • 分类号:45-52
摘要
基于对准噶尔盆地南缘中二叠统芦草沟组页岩矿物学和地球化学的研究,着重探讨了芦草沟组页岩的地球化学组分、源区母岩性质和构造背景。结果表明:芦草沟组页岩矿物以石英、伊利石和伊蒙混层为主,含少量斜长石和铁白云石;对比上地壳元素丰度,页岩相对富集P_2O_5,V,Ni和Cu,其他元素含量相对亏损或类似于上地壳丰度,P_2O_5的富集归因于同期火山灰的输入;矿物组合及源岩判别指标揭示源区母岩以酸性岩为主,但与上地壳相比,其含更多的铁镁质组分和更少的长英质组分,最可能为类似于英云闪长岩的岩石;芦草沟组页岩具生物成因过量的SiO_2的存在,导致页岩比母岩(英云闪长岩)具更高的SiO_2/Al_2O_3比值;二叠纪源区处于大陆岛弧构造背景之下。
        The mineralogy and geochemistry of the Middle Permian Lucaogou Formation shales in the southern Junggar basin,Xinjiang,have been performed to investigate its geochemical composition and to infer parent rock nature and tectonic setting.These results show that mineral matter is dominated by quartz, illite and illite/smectite layers, and to a lesser extent plagioclase and ankerite; in comparison to elemental abundance of the Upper Continental Crust(UCC),these analysed shales are enriched in P2O5, V, Ni and Cu, the remaining elements are depleted or are similar to corresponding element abundance of UCC, and the enrichment of P2O5 is ascribed to the synsedimentary volcanic ash input;The provenance of these investigated shales is mainly felsic igneous rock which contains more mafic constituents and less felsic ones than that of UCC and most likely is tonalite; these shales contain large proportions of SiO2 derived from biogenic origin, which has led to significantly higher SiO2/Al2O3 ratios than that of tonalite;The tectonic setting of sediment-source region is predominated by Continental Island Arc setting in the Permian.
引文
[1] Taylor, S. R., and McLennan, S. M. The continental crust:its composition and evolution[M]. London, Blackwell, 1985, 312 p.
    [2] Cullers R L, Podkovyrov V M. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia:Implication for mineralogical and provenance control and recycling[J]. Precambrian Research, 2000, 104:77-93.
    [3] Hayashi K, Fujisawa H, Holland H D et al. Geochemistry of 1.9Ga sedimentary rocks from northeastern Labrador, Canada[J].Geochimica et Cosmochimica Acta, 1997, 61:4115-4137.
    [4] Bhatia M R, Taylor S R. Trace element geochemistry and sedimentary provinces:a study from the Tasman Geosyncline, Australia[J]. Chem Geol, 1981, 33:115-126.
    [5] Bhatia M R, Crook K A W. Trace element characteristics of graywacks and tectonic discrimination of sedimentary basins[J]. Contribute Mineral Petrol, 1986, 92:181-193.
    [6] Bhatia M R. Plate tectonics and geochemical composition of sandstones[J]. Journal of Geology, 1983, 91:611-627.
    [7] Rose B P, Korsch R J. Determination of tectonic setting of sandstone-mudston suite using SiO2 content and K2O/Na2O ration[J].Geology, 1986, 94(5):635-650.
    [8] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4).
    [9] Cullers R L. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia[J].Precambrian Research, 2002, 117:157-183.
    [10]白滨.准噶尔南缘构造沉积演化及其控制下的基本油气特征[D].西安:西北大学,2008.
    [11]李丕龙,冯建辉,陆永潮,等.准噶尔盆地构造沉积与成藏[M].北京:地质出版社, 2010:1-340.
    [12]魏红兴.博格达山南缘构造特征及其形成演化[D].西安:西北大学,2007.
    [13]彭学峰,汪立今,姜丽萍,等.准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境指示意义[J].矿物岩石地球化学通报, 2012, 31(2):121-127.
    [14]李玮,胡建民,黎敦朋,等.新疆博格达山北缘晚古生代—中生代古水流样式转折及其构造意义[J].沉积学报,2007, 25(2):283-292.
    [15]张传恒,刘典波,张传林,等.新疆博格达山初始隆升时间的地层学标定[J].地学前缘, 2005, 12(1):294-302.
    [16] Li B, Zhuang X, Liu X, et al. Mineralogical and geochemical composition of Middle Permian Lucaogou Formation in the southern Junggar Basin, China:implications for paleoenvironment, provenance, and tectonic setting[J]. Arabian Journal of Geosciences,2016, 9(3):1-16.
    [17] Degens E T, Williams E G, Keith M L. Environmental studies of carboniferous sediments part I:Geochemical criteria for different marine from freshwater shales[J]. AAPG, 1957, 41:2427-2455.
    [18] Carroll A R, Brassell S C, Graham S A. Upper Permian Lacustrine Oil Shales, Southern Junggar Basin, Northwest China(1)[J].AAPG Bulletin, 1992, 76(12):1874-1902.
    [19] Carroll A R. Upper Permian lacustrine organic facies evolution,southern Junggar Basin, NW China[J]. Organic Geochemistry,1998, 28(11):649-667.
    [20]李倩倩.博格达山北麓二叠系芦草沟组油页岩地球化学特征研究[D].北京:中国地质大学,2009.
    [21] Tao S, Tang D, Xu H, et al. Organic geochemistry and elements distribution in Dahuangshan oil shale, southern Junggar Basin:origin of organic matter and depositional environment[J]. International Journal of Coal Geology, 2013, 115:41-51.
    [22] Wedepohl K H. Environmental influences on the chemical composition of shales and clays[J]. Physics and Chemistry of the Earth,1971, 8:305-333.
    [23] Nesbitt H W, Markovics G. Weathering of granodioritic crust,long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8):1653-1670.
    [24] Floyd P A, Winchester J A, Park R G. Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland[J]. Precambrian Research, 1989, 45(1):203-214.
    [25] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywacks and mudrocks:provenance and tectonic control[J]. Sedimentary Geology, 1985, 45:97-113.
    [26] Eskenazy G M. Rare earth elements in a sampled coal from the Pirin deposit, Bulgaria[J]. International Journal of Coal Geology,1987, 7(3):301-314.
    [27] Cullers R L. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sedi ment in Kansas, USA[J]. Geochimica et Cosmochimica Acta, 1994, 58(22):4955-4972.
    [28] Wedepohl K H. The composition of the continental crust[J]. Geochimica et cosmochimica Acta, 1995, 59(7):1217-1232.
    [29] Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to mineralogy and petrology, 1987, 95(4):407-419.
    [30] Turgeon S, Brumsack H J. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian Bound ary Event(Cretaceous)in the Umbria-Marche Basin of central Ita ly[J]. Chemical Geology, 2006, 234(3):321-339.
    [31] Harris N B, Miskimins J L, Mnich C A. Mechanical anisotropy in the Woodford Shale, Permian Basin:Origin, magnitude, and scale[J]. The Leading Edge, 2011, 30(3):284-291.
    [32] Gromet, L.P., Dymek, R.F., Haskin, L.A., et al. The North American shale composite:its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48,2469-2482.
    [33] Floyd P A, Shail R, Leveridge B E, et al. Geochemistry and provenance of Rhenohercynian synorogenic sandstones:implications for tectonic environment discrimination[J]. Geological Society,London, Special Publications, 1991, 57(1):173-188.
    [34] Masuda A, Nakamura N, Tanaka T. Fine structures of mutually normalized rare-earth patterns of chondrites[J]. Geochimica et Cosmochimica Acta, 1973, 37(2):239-248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700