小麦种质资源农艺性状遗传分析及白粉病抗性鉴定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genetic Analysis on Agronomic Traits and Identification of Powdery Mildew Resistance of Wheat Germplasm Resources
  • 作者:王掌军 ; 刘妍 ; 王姣 ; 付青青 ; 刘凤楼 ; 张双喜 ; 张文杰 ; 张晓岗 ; 刘生祥
  • 英文作者:WANG Zhang-jun;LIU Yan;WANG Jiao;FU Qing-qing;LIU Feng-lou;ZHANG Shuang-xi;ZHANG Wen-jie;ZHANG Xiao-gang;LIU Sheng-xiang;Agricultural College of Ningxia University;Institute of Crop Sciences,Ningxia Academy of Agricultural-Forestry Sciences;
  • 关键词:小麦 ; 农艺性状 ; 基因标记 ; 白粉病抗性
  • 英文关键词:Wheat(Triticum aestivum L.);;Agronomic trait;;Gene marker;;Powdery mildew resistance
  • 中文刊名:XNYX
  • 英文刊名:Southwest China Journal of Agricultural Sciences
  • 机构:宁夏大学农学院;宁夏农林科学院农作物研究所;
  • 出版日期:2018-07-28
  • 出版单位:西南农业学报
  • 年:2018
  • 期:v.31
  • 基金:宁夏回族自治区农业育种专项——小麦新品种选育(2013NYYZ02)
  • 语种:中文;
  • 页:XNYX201807003
  • 页数:11
  • CN:07
  • ISSN:51-1213/S
  • 分类号:16-26
摘要
【目的】本文拓宽了宁夏小麦遗传基础为育种提供优异资源。【方法】以外引和宁夏自育的81份小麦种质为材料,借助于形态学和分子标记手段,对不同农艺性状指标进行分析,部分抗性基因分子标记检测及成株期田间白粉病抗性鉴定。【结果】(1)依变异系数大小,9个农艺性状依次为有效穗(14.77%)﹥穗粒重(14.41%)﹥穗粒数(8.94%)﹥穗下茎长(7.03%)﹥结实数(5.69%)﹥小穗数(5.03%)﹥穗长(4.98%)﹥株高(3.21%)﹥千粒重(0.65%);(2)过多的有效穗不利于提高穗粒数和经济系数,穗长越长有利于增多穗粒数和提高粒重,较多小穗数有利于提高单株粒数和粒重,穗粒数、穗粒重、千粒重、经济系数间均具有极显著正相关;(3)在距离为21.83时,将81份种质分为7个类群,第Ⅰ类群材料平均有效穗最多(6.83±1.986)个,第Ⅱ类群材料平均株高最矮(83.94±13.42)cm,第Ⅲ类群材料穗下茎节最长(51.50±0.500)cm,第Ⅵ类群材料的穗长、穗粒数、穗粒重、千粒重、经济系数均最高[分别为(11.00±2.370)cm、(61.00±4.359)粒、(2.69±0.303)g、(44.13±0.006)g、0.533],第Ⅶ类群材料的小穗数和结实小穗数最多[分别为(24.33±1.528)、(23.33±1.528)个];(4)9个白粉病抗性基因标记引物,检测到携带1、2、3、4个基因标记的材料分别为11、23、38和5份。【结论】总体上,地方和农家品种平均有效穗最多,自育和外引种质平均株高最矮,而唯有外引种质携带有Pm~21基因,携带Pm6和Pm~21基因的种质表现出较强的田间抗病性。
        【Objective】The present paper aimed to broaden the genetic basis of Ningxia wheat and provide good resources for breeding.【Method】Taken the 81 wheat germplasma of foreign introduction and Ningxia bred as tested materials,their different agronomic traits were analyzed,some resistant gene markers were detected,and the field powdery mildew resistance at adult stage were identified based on morphology and molecular markers. 【Result】( i) Based on the variation of from big to small,9 agronomic traits were in order of effective spikes> grain weight per spike > kernels per spike > ear stem length > fertile spikelet > spikelet numbers > spike length > plant height > thousand kernel weight.( ii) More effective spikes were against kernels per spike and economic coefficient increased,longer spike length and more spikelet numbers help kernels and grain weight per spike increased,and there were significant positive correlations among kernels per spike,grain weight per spike,thousand kernel weight and economic coefficient.( iii)81 tested materials were divided into seven groups at the distance 21. 83. The average fertile spikelet numbers of No. Ⅰgroup were the most,the average plant height of No. Ⅱgroup were the lowest,the average spike stem length of No. Ⅲ group were the longest,the ear length,kernels per spike,grain weight per spike,thousand kernel weight,economic coefficient of No. Ⅵ group was the highest,and the spikelet numbers and fertile spikelet of No. Ⅶ group were the most.(iv)The material numbers were 11,23,38 and 5 detected one,two,three and four genes using 9 powdery mildew resistant gene markers respectively.【Conclusion】As a whole,the average fertile spikelet of local and farm varieties was the most,the average plant height of bred and foreign germplasm was the lowest,only foreign resources carried gene Pm~21,and the materials carrying genes Pm6 and Pm~21 indicated stronger disease resistance in field.
引文
[1]Tanksley S D,Mc Couch S R.Seed banks and molecular maps:unlocking genetic potential from the wild[J].Science,1997,277:1063-1066.
    [2]Chan S W L.Chromosome engineering:power tools for plant genetics[J].Trends in Biotechnology,2010,28:605-610.
    [3]Alam M A,Xue F,Wang C Y.Powdery mildew resistance genes in wheat:Identification and genetic analysis[J].Journal of Molecular Biology Research,2011,1(1):21-39.
    [4]李振声.我国小麦育种的回顾与展望[J].中国农业科技导报,2010,12(2):1-4.
    [5]Zhou Y,He Z H,Sui X X,et al.Genetic improvement of grain yield and associated traits in the northern China winter wheat region from 1960 to 2000[J].Crop Science,2007,47:245-253.
    [6]Sears E R.Transfer of Alien Genetic Material to Wheat[A].In:Evans L T,Peacock W J,eds.Wheat Science-Today and Tomorrow[C].Cambridge:Cambridge University Press,1981:75-89.
    [7]Browman C M,Bonnard G,Dyer T A.Chloroplast DNA variation between species of Triticum and Aegilops location of the variation on the chloroplast genome and its relevance to the inheritance and classification of the cytoplasm[J].Theoretical and Applied Genetics,1983,65:247-262.
    [8]Lipps P E,Madden L V.Effect of triadimenol seed treatment and triadimefon foliar treatment on powdery mildew epidemics and grain yield of winter wheat cultivars[J].Plant Disease,1988,72:887-892.
    [9]Ma H Q,Kong Z X,Fu B S,et al.Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat[J].Theoretical and Applied Genetics,2011,123:1099-1106.
    [10]Jackie C,Zhang H T,Michael J,et al.A mutagenesis-derived broad-spectrum disease resistance locus in wheat[J].Theoretical and Applied Genetics,2012,125:391-404.
    [11]Xiao M G,Song F J,Jiao J F,et al.Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi[J].Theoretical and Applied Genetics,2013,126:1397-1403.
    [12]Hao Y F,Rvan P,Christina C,et al.Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat[J].Theoretical and Applied Genetics,2014,128:465-476.
    [13]Stine P,Jeanette H L,Margaret L W,et al.Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat[J].Theoretical and Applied Genetics,2015,128:303-312.
    [14]Lukaszewski A J.Frequency of 1RS.1AL and 1RS.1BL translocations in United States wheats[J].Crop Science,1990,30:1151-1153.
    [15]Gupta R B,Shepherd K W.Production of multiple wheat-rye 1RS translocation stocks and genetic abalysis of LMW subunits of glutenin and gliadins in wheats using these stocks[J].Theoretical and Applied Genetics,1993,85:719-728.
    [16]Moreno-Sevilla B,Baenziger P S,Peterson C J,et al.The 1BL/1RS translocation:Agronomic performances of F3-derived lines from a winter wheat cross[J].Crop Science,1995,35:1051-1055.
    [17]Cai X,Chen P D,Xu S S,et al.Utilization of alien genes to enhance Fusarium head blight resistance in wheat-A review[J].Euphytica,2005,142:309-318.
    [18]Chen P D,Qi L L,Zhou B,et al.Developmentand molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew[J].Theoretical and Applied Genetics,1995,91:1125-1128.
    [19]Li H,Chen X,Xin Z Y,et al.Development and identification of wheat-Haynaldia villosa T6DL·6VS chromosome translocation lines conferring resistance to powdery mildew[J].Plant Breeding,2005,124:203-205.
    [20]Cao A Z,Xing L P,Wang X Y,et al.Serine/threonine kinase gene Stpk-V,a key member of powdery mildew resistance gene Pm21,confers powdery mildew resistance in wheat[J].PNAS,2011,108:7727-7732.
    [21]Chen P D,You C F,Hu Y,et al.Radition-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat[J].Molecular Breeding,2013,31:477-484.
    [22]Yang Z J,Li G R,Chang Z J,et al.Characterization of a partial amphiploid between Triticum aestivum cv.Chinese Spring and Thinopyrum intermedium ssp.Trichophorum[J].Euphytica1,2006,49:11-17.
    [23]Mohler V,Jahoor A.Allele-specific amplification of polymorphic sites for the detection of powdery mildew resistance loci in cereals[J].Theoretical and Applied Genetics,1996,93(7):1078-1082.
    [24]Ma Z Q,Wei J B,Cheng S H.PCR-based markers for the powdery mildew resistance gene Pm4a in wheat[J].Theoretical and Applied Genetics,2004,109:140-145.
    [25]Ji J H,Qin B,Wang H Y,et al.STS markers for powdery mildew resistance gene Pm6 in wheat[J].Euphytica,2007,163(2):159-165.
    [26]Mohler V,Hsam S L K,Zeller F J,et al.An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat[J].Plant Breeding,2001,120:448-450.
    [27]Song W,Xie H,Liu Q,et al.Molecular identification of Pm12-carrying introgression lines in wheat using genomic and EST-SSR markers[J].Euphytica,2007,158(1):95-102.
    [28]Cenci A,D,Ovidio R,Tnzarella O A,et al.Identification of molecular markers linked to Pm13,an Aegilops longissima gene conferring resistance to powdery mildew in wheat[J].Theoretical and Applied Genetics,1999,98:448-454.
    [29]Chen X M,Luo Y H,Xia X C,et al.Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis[J].Plant Breeding,2005,124:225-228.
    [30]Liu Z Y,Sun Q X,Ni Z F,et al.Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat origination from wild emmer[J].Euphytica,2002,123:21-29.
    [31]Huang X Q,Hsam S L K,Zeller F J,et al.Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding[J].Theoretical and Applied Genetics,2000,101:407-414.
    [32]盛宝钦,段霞瑜.对记载小麦成株白粉病“0—9级法”的改进[J].北京农业科学,1991,9(1):38-39.
    [33]任正隆.关于作物育种攻关的几个问题[J].西南农业学报,1995,8(4):119-125.
    [34]柴永峰,李秀绒,赵智勇,等.国外小麦种质资源农艺性状及品质性状的多样性分析[J].农学学报,2013,3(9):1-8.
    [35]王光禄,刘志宏,程倩倩,等.94份国外小麦种质材料的主要农艺性状分析[J].麦类作物学报,2016,36(5):577-582.
    [36]刘新月,裴磊,董双全,等.冬小麦种质材料主要农艺性状研究[J].中国农学通报,2012,28(33):18-24.
    [37]Peng J,Richards D E,Hartley N M,et al.‘Green revolution’genes encode mutant gibberellin response modulators[J].Nature,1999,400:256-261.
    [38]Hedden P.The genes of the green revolution[J].2003,19:5-9.
    [39]Saville R J,Gosman N,Burt C J,et al.The‘Green Revolution’dwarfing genes play a role in disease resistance in Triticum aestivum and Hordeum vulgare[J].Journal Experimental Botany,2011,63:1271-1283.
    [40]伍维模,李世清.小麦品种演变过程中性状遗传改良规律综述[J].塔里木大学学报,2006,18(1):43-47.
    [41]Xie W,Bendavid R,Zeng B,et al.Suppressed recombination rate on 6VS/6AL translocation region carrying the Pm21 locus introgressed from Haynaldia villosa into hexaploid wheat[J].Molecular Breeding,2012,29(2):399-412.
    [42]Jia J,Devos K M,Chao S,et al.RFLP-based maps of the homoelogous group-6 chromosomes of wheat and their application in the tagging of Pm12,a powdery mildew resistance gene transferred from Aegilops speltoides to wheat[J].Theoretical and Applied Genetics,1996,92:559-565.
    [43]Friebe B,Gill B S,Tuleen N A,et al.Registration of KS93WGRC28 powdery resistant T6BL.6RL wheat germplasm[J].Crop Science,1995,35(4):1237.
    [44]Liu Z Y,Sun Q X,Ni Z F,et al.Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer[J].Euphytica,2002,123:21-29.
    [45]Mohler V,Zeller F J,Wenzel G,et al.Chromosomal locaction of genes for resistance to powdery mildew in common wheat(Triticum aestivum L.em Thell.):9.Gene Ml Zec1 from the Triticum dicoccoides-derived wheat line Zecoi-1[J].Euphytica,2005,142:161-167.
    [46]Ji X L,Xie C J,Ni Z F,et al.Identification and genetic mapping of a powdery mildew resistance gene in wild emmer(Triticum dicoccoides)accession IW72 from Israel[J].Euphytica,2008,159:385-390.
    [47]Liu Z J,Zhu J,Cui Y,et al.Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer(Triticum turgidum var.Dicoccoides)on chromosome 2BS[J].Theoretical and Applied Genetics,2012,124:1041-1049.
    [48]Zhan H X,Li G R,Zhang X J,et al.Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line[J].PLo S ONE,2014,9(11):1-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700