一种基于新型自组装微带-波导过渡的D波段通信发射机模块(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A D-band communication transmitter module with a novel self-aligned microstrip line-to-waveguide transition
  • 作者:杨宋源 ; 于伟华 ; 安思宁 ; Ahmed ; Hassona ; Herbert ; Zirath ; 吕昕 ; 何仲夏
  • 英文作者:YANG Song-Yuan;YU Wei-Hua;AN Si-Ning;Ahmed Hassona;Herbert Zirath;LYU Xin;Zhongxia Simon He;School of Information and Electronics,Beijing Institute of Technology;Dept.Microtechnology and Nanoscience,Chalmers University of Technology;
  • 关键词:发射机模块 ; 波导过渡 ; 低成本封装 ; D波段
  • 英文关键词:transmitter module;;waveguide transition;;low-cost packaging;;D-band
  • 中文刊名:HWYH
  • 英文刊名:Journal of Infrared and Millimeter Waves
  • 机构:北京理工大学信息与电子学院;查尔姆斯理工大学微技术和纳米科学系;
  • 出版日期:2019-06-15
  • 出版单位:红外与毫米波学报
  • 年:2019
  • 期:v.38
  • 基金:Supported by the National Natural Science Foundation of China(61771057);; Stiftelsen f?r Strategisk Forskning of Sweden(SE13-0020)
  • 语种:英文;
  • 页:HWYH201903007
  • 页数:7
  • CN:03
  • ISSN:31-1577/TN
  • 分类号:36-42
摘要
展示了一种基于新型自组装微带-波导过渡的D波段(110~170 GHz)发射机模块.过渡结构的仿真平均插入损耗为0. 6 d B,回波损耗于带内基本优于10 d B.基于该过渡结构以及阻性混频器和倍频器芯片,设计了一种D波段发射机模块.该发射机模块工作于110~153 GHz,峰值输出功率于150 GHz可达-4. 6 d Bm,3d B带宽为145. 8~159. 3 GHz.使用该模块进行了64-QAM高阶无线通信测试,测试传输速率为3 Gb/s,验证了模块封装方案的实用性.
        A D-band( 110 ~ 170 GHz) transmitter module,based on a novel self-aligned microstrip-to-waveguide transition,was demonstrated. The simulated average insertion loss of the transition is about 0. 6 dB and return loss is better than 10 dB during working band. A D-band transmitter module was developed using such transition with resistive mixer and multiplier chips. The transmitter module operates between 110 ~ 153 GHz and provides a peak saturated output power of-4. 6 dBm at 150 GHz and with 13. 5 GHz 3 dB bandwidth from 145. 8 to 159. 3 GHz.3 Gb/s wireless communication with this module at 145 GHz was demonstrated with spectrum efficient 64-QAM modulation.
引文
[1]Millimeter Wave Technology Market by Product(Scanner Systems Telecommunication Equipment),Frequency Band,License Type,Application(Mobile and Telecom,Military,De-fense,and Aerospace,Automotive),and Geography-Global Forecast to 2023[OL],2017,https://www. marketsandmarkets. com/Market-Reports/millimeter-wavetechnology-market-981. html.
    [2]Laskin E. Chevalier,P. Chantre,A.,et al. 165 GHz Transceiver in Si Ge Technology[J]. IEEE Journal of Solid-State Circuits,2008,43(5):1087-1100
    [3]Xu Z. Gu,Q. J.,Wu Y.-C.,et al. Chang,Dband CMOS transmitter and receiver for multi Giga-bit/sec wireless data link:IEEE Custom Integrated Circuits Conference[C]. USA:2010:1-4.
    [4]Katayama K,Motoyoshi,M Takano K,et al. 28mW 10Gbps transmitter for 120 GHz ASK transceiver:IEEE/MTT-S International Microwave Symposium Digest[C]. Canada:2012:1-3.
    [5]Carpenter S. Nopchinda,D.,Abbasi M.,et al. A D-band 48-Gbit/s 64-QAM/QPSK Direct-Conversion I/Q Transceiver Chipset[J].IEEE Transactions on Microwave Theory and Techniques,2016,64(4):1285-1296.
    [6]Mullerwiebus V. Experimental characterization and behavior to misalignments of a D-band-transition from rectangular to coplanar waveguide on membrane:Conference Digest of the Joint International Conference on Infrared and Millimeter Waves and International Conference on Terahertz Electronics[C]. Germany:2004:481-482.
    [7]Hirsch S,Duwe K,Judaschke R. A transition from rectangular waveguide to coplanar waveguide on membrane:25th International Conference on Infrared and Millimeter Waves(Cat. No. 00EX442)[C]. China:2000:299-300.
    [8]Roy R,Kush A K,Dixit R P. Fabrication and performance of broadband back to back waveguide to suspended stripline transition on quartz for D-band:International Conference on Recent Advances in Microwave Theory and Applications[C]. India:2008:719-721.
    [9]Hassona V,Vassilev Z. S. He,et al. Silicon Taper Based D-band Chip to Waveguide Interconnect for Millimeter-Wave Systems[J].IEEE Microwave and Wireless Components Letters,2017,27(12):1092-1094.
    [10]Deng X D,Li Y,Wu W,et al. A D-band chip-to-waveguide-horn(CWH)antenna with 18. 9 dBi gain using CMOS technology:Wireless Symposium[C]. China:2015:1-4.
    [11]Hassona,Z. S. He,V. Vassilev,et al. D-band waveguide transition based on Linearly Tapered Slot Antenna:IMAPS Nordic Conference on Microelectronics Packaging(Nord Pac)[C]. Sweden:2017:64-67.
    [12]Wang J.,Hao Z. C.,Fan K. K.. A 110-150 GHz SIW-rectangular waveguide transition for terahertz applications:IEEE Mtt-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications[C]. China:2016:13.
    [13]M. Fakharzadeh and S. Jafarlou. A Broadband Low-Loss 60 GHz Die to Rectangular Waveguide Transition[J]. IEEE Microwave and Wireless Components Letters,2015,25(6):370-372.
    [14]Jameson S.,Khamaisi B. Socher E.. A+6 dBm 128GHz source module with full F-band waveguide package and wirebonded CMOS chip:IEEE MTT-S International Microwave Symposium(IMS)[C].USA:2016:1-4.
    [15]Li,S. Chi T. Park,J. S.,et al. A fully packaged D-band MIMO transmitter using high-density flip-chip interconnects on LCP substrate:IEEE MTT-S International Microwave Symposium(IMS)[C],USA:2016:1-4.
    [16]Deferm N. Reynaert P.. A 120 GHz Fully Integrated 10 Gb/s ShortRange Star-QAM Wireless Transmitter With On-Chip Bondwire Antenna in 45 nm Low Power CMOS[J]. IEEE Journal of Solid-State Circuits,2014,49(7):1606-1616.
    [17]Takahashi H.,Hirata A.,Takeuchi J.,et al. 120-GHz-band 20-Gbit/s transmitter and receiver MMICs using quadrature phase shift keying:7th European Microwave Integrated Circuit Conference[C].Netherlands:2012:313-316.
    [18]Kosugi T. Tokumitsu,M.,Enoki T.,et al. 120-GHz Tx/Rx chipset for 10-Gbit/s wireless applicationsusing 0. 1 mu; m-gate InP HEMTs:IEEE Compound Semiconductor Integrated Circuit Symposium[C].USA:2004:171-174.
    [19]Foulon S.,Pruvost S.,Pache D.,et al. A 142 GHz fully integrated wireless chip to chip communication system for highdata rate operation:Proceedings of the ESSCIRC(ESSCIRC)[C]. Romania:2013:77-80.
    [20]R. Corporation. ULTRALAM 3850,Liquid Crystalline Polymer,laminate circuit materials[OL],2015,https://www. rogerscorp. com/documents/730/acm/ULTRALAM-3000-LCP-laminate-data-sheetULTRALAM-3850. aspx.
    [21]__,ULTRALAM 3908 Bondply[OL],2015,http://www. rogerscorp. com/documents/731/acm/ULTRALAM-3000-LCP-PrepregULTRALAM-3908.
    [22]Smith S. L. Dyadyuk V.. Measurement of the dielectric properties of Rogers R/flex 3850 liquid crystalline polymer substrate in V and Wband:Antennas and Propagation Society International Symposium[C],USA:2005:435-438.
    [23] Behera B. R.. Vivaldi antenna for medical applications:Design,modelling and analysis of microstrip-fed vivaldi antenna:IEEE Annual India Conference(INDICON)[C]. India:2016:1-4.
    [24]Ren X.,Liao S. Xue,Q.,et al. Wideband circularly polarized antenna based on Vivaldi antenna structure:IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting[C]. USA:2017:1321-1322.
    [25]Dong Y.,Choi J. Itoh,T.. Vivaldi Antenna With Pattern Diversity for 0. 7 to 2. 7 GHz Cellular Band Applications[J],IEEE Antennas and Wireless Propagation Letters,2018,17(2):247-250.
    [26] Pozar D. M.. Microwave Engineering[M]. USA:John Wiley&Sons,Inc,2011,252-256.
    [27]Kildal P. S. Alfonso,E.,A. Valero-Nogueira,et al. Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates[J],IEEE Antennas and Wireless Propagation Letters,2009,8:84-87.
    [28]Gotmic, Datesheet of D-band IQ-subharmonic mixer MMIC(gMDR0035 A)[OL], http://www. gotmic. se/documents/g MDR0035A.
    [29]Gotmic,Datasheet of E-band X6 MMIC multiplier(g XSB0025 A)[OL],2016,http://www. gotmic. se/documents/g XSB0025A.
    [30]Vassilev V. He,,Z. S. S. Carpenter,et al. Spectrum Efficient Dband Communication Link for Real-time Multi-Gigabit Wireless Transmission:IEEE MTT-S International Microwave Symposium(IMS)[C],USA:2018:1523-1526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700