Sc_2O_3稳定ZrO_2电解质材料及其研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Scandia Stabilized Zirconia Electrolyte Materials
  • 作者:徐宏 ; 薛倩楠 ; 张建星 ; 冯宗玉 ; 黄小卫
  • 英文作者:Xu Hong;Xue Qiannan;Zhang Jianxing;Feng Zongyu;Huang Xiaowei;National Engineering Research Center for Rare Earth Materials,Beijing General Research Institute for Non-ferrous Metals,Grirem Advanced Materials Co.,Ltd.;
  • 关键词:固体氧化物燃料电池(SOFC) ; 电解质 ; 氧化钪稳定氧化锆(ScSZ) ; 稀土
  • 英文关键词:solid oxide fuel cell(SOFC);;electrolyte;;scandia stabilized zirconia(ScSZ);;rare earths
  • 中文刊名:XTXB
  • 英文刊名:Journal of the Chinese Society of Rare Earths
  • 机构:北京有色金属研究总院稀土材料国家工程研究中心有研稀土新材料股份有限公司;
  • 出版日期:2016-12-15
  • 出版单位:中国稀土学报
  • 年:2016
  • 期:v.34;No.164
  • 语种:中文;
  • 页:XTXB201606011
  • 页数:9
  • CN:06
  • ISSN:11-2365/TG
  • 分类号:108-116
摘要
固体氧化物燃料电池(SOFC)是高效洁净利用碳基燃料的有效途径,具有高效率、环境友好、全固态结构等特点,并且适用于多种燃料气体,因此成为能源和材料领域的热点之一。SOFC的国际发展趋势是中温化,具有投资小、材料成本较低、电极不易老化、界面反应可有效控制等优点。电解质是整个SOFC的核心部件,增强电解质的电导率,开发高性能的电解质材料是SOFC实现大规模发展的关键。目前SOFC所使用的电解质主要为锆基固体电解质,其中Sc_2O_3稳定ZrO_2(ScSZ)是锆基固体电解质中离子电导率最高的电解质材料,是中温SOFC(ITSOFC)首选电解质。首先介绍了固体氧化物燃料电池的结构、工作原理、对电解质的材料要求及其技术发展趋势,然后阐述了ScSZ电解质材料的晶体结构、离子导电机制。重点总结了ScSZ电解质材料研究现状、发展趋势及发展前景。
        Solid oxide fuel cell( SOFC) is the effective way to clean and efficient use of carbon-based fuels. It becomes one of hotspots in the field of energy and materials for its high efficiency,environment friendliness,all solidstate structure and adaptability on variety of fuel gas. In the international development trend of SOFC,the suitable temperature for SOFC is becoming lower,which has the advantages of little investment,low material cost,the electrode is not easy to aging,and interface reaction can be effectively controlled. The electrolyte is the core components of entire solid oxide fuel cell. Developing high-performance SOFC electrolyte material is the key to achieve large-scale development. The main electrolyte of SOFC is zirconium base solid electrolyte,in which scandia stabilized zirconia( ScSZ) is the highest ionic conductivity and the preferred in intermediate temperature SOFC( ITSOFC) electrolyte. This article described the structure,working principle and electrolyte material requirements of the solid oxide fuel cell,and expounded the crystal structure,ionic conductivity principle of ScSZ electrolyte material. The research status,trends and prospects of Sc SZ electrolyte materials were emphatically summarized.
引文
[1]李瑛,王林山.燃料电池[M].北京:冶金工业出版社,2000.Li Y,Wang L S.Fuel Cells[M].Beijing:Metallurgical Industry Press,2000.
    [2]Laguna-Bercero M A.Recent advances in high temperature electrolysis using solid oxide fuel cells:A review[J].J.Power Sources,2012,203(1):4.
    [3]黄镇江.燃料电池及其应用[M].北京:电子工业出版社,2005.Huang Z J.Fuel Cell and Its Applications[M].Beijing:Electronic Industry Press,2005.
    [4]Kim J H,Irvine J T.Characterization of layered perovskite oxides Nd Ba1-xSxCO2O5+δ(x=0 and 0.5)as cathode materials for IT-SOFC[J].Int.J.Hydrogen Energy,2012,37(7):5920.
    [5]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2004.Han M F,Peng S P.Solid Oxide Fuel Cell Material and Its preparation[M].Beijing:Science Press,2004.
    [6]李箭.固体氧化物燃料电池:发展现状与关键技术[J].功能材料与器件学报,2007,13(6):683.Li J.Solid oxide fuel cells:Development status and key technologies[J].Journal of Functional Materials and Devices,2007,13(6):683.
    [7]朴金花,孙克宁,张乃庆,周德瑞,华军.固体氧化物燃料电池密封材料的研究进展[J].人工晶体学报,2004,33:919.Piao J H,Sun K N,Zhang N Q,Zhou D R,Hua J.Progress of glass sealing materials used for SOFC[J].Journal of Synthetic Crystals,2004,33:919.
    [8]Sinha A,Millera N D,Irvine T S J.Development of novel anode material for intermediate temperature SOFC(IT-SOFC)[J].J.Mater.Chem.A,2016,4:11117.
    [9]Singhal S C.Solid oxide fuel cells for stationary,mobile,and military applications[J].Solid State Ionics,2002,152:405.
    [10]Dokiya M.SOFC system and technology[J].Solid State Ionics,2002,152:383.
    [11]Shi H G,Ran R,Shao Z P.Wet powder spraying fabrication and performance optimization of IT-SOFCs with thin-film Sc SZ electrolyte[J].Int.J.Hydrogen Energy,2012,(37):1125.
    [12]Sun L,Guo H,Peng H,Gong S,Xu H.Influence of partial substitution of Sc2O3with Gd2O3on the phase stability and thermal conductivity of Sc2O3-doped Zr O2[J].Ceram.Int.,2013,39(3):3447.
    [13]徐旭东,田长安,尹奇异,程继海.固体氧化物燃料电池电解质材料的发展趋势[J].硅酸盐通报,2011,30(3):593.Xu X D,Tian C A,Yin Q Y,Cheng J H.Development trends of electrolyte materials in solid oxide fuel cell[J].Bulletin of the Chinese Ceramic Society,2011,30(3):593.
    [14]Stambouli A B,Traversa E.Solid oxide fuel cells(SOFCs):A review of an environmentally clean and efficient source of energy[J].Renewable Sustainable Energy Rev.,2002,6(5):433.
    [15]刘铮,谢丽英.燃料电池产业最新动态[J].稀土,2011,32(4):98.Liu Z,Xie L Y.The latest developments in fuel cell industry[J].Chinese Rare Earths,2011,32(4):98.
    [16]Singhal S C.Advances in solid oxide fuel cell technol-ogy[J].Solid State Ionics,2002,135(23):305.
    [17]肖钢.燃料电池技术[M].北京:电子工业出版社,2009.1.Xiao G.Fuel Cell Technology[M].Beijing:Electronic Industry Press,2009.1.
    [18]Souza S D,Visco S J,Jonghe L C D.Reduced-temperature solid oxide fuel cell based on YSZ thin-film electrolyte[J].J.Electrochem.Soc.,1997,144(3):35.
    [19]Choi S W,Kim K J,Kim M Y.Effect of ceria content of Ce Sc SZ powder on the phase stability and electrical conductivity of SOFC electrolyte[J].ECS Trans.,2015,68(1):405.
    [20]Wang Y,Zhang Y,Xia C.A novel method to determine the particle-particle fracture of yttria stabilized zirconia[J].J.Power Sources,2012,211:77.
    [21]Huang J B,Xie F C,Wang C H.Development of solid oxide fuel cell materials for intermediate-to low temperature operation[J].Int.J.Hydrogen Energy,2012,37(1):877.
    [22]李鑫,刘后龙,毕洪运,陈礼清.中铬铁素体不锈钢18Cr Nb高温氧化行为[J].材料研究学报,2016,30(4):263.Li X,Liu H L,Bi H Y,Chen L Q.Oxidation behavior of 18 Cr Nb ferritic stainless steel at elevated temperatures[J].Chinese Journal of Materials Research,2016,30(4):263.
    [23]李永峰,董新法,林维明.固体氧化物燃料电池的现状和未来[J].电源技术,2002,26(6):462.Li Y F,Dong X F,Lin W M.Current status and future of solid oxide fuel cells[J].Chinese Journal of Power Sources,2002,26(6):462.
    [24]张联盟,黄学辉,宋晓岚.材料科学基础[M].武汉:武汉理工大学出版社,2004.42.Zhang L M,Huang X H,Song X L.Fundamentals of materials[M].Wuhan:Wuhan University of Technology Press,2004.42.
    [25]雷小力.掺杂氧化锆陶瓷的制备及导电性研究[D].武汉:武汉理工大学,2007.Lei X L.Preparation and Conductivity of the Doped Zirconia Ceramics[D].Wuhan:Wuhan University of Technology,2007.
    [26]Kim N,Kim B H,Lee D.Effect of co-dopant addition on properties of doped zirconia electrolyte[J].J.Power Sources,1995,90:139.
    [27]Luo J,Almond D P,Stevens R.Ionic nobilities and association energies from an analysis of electrical impedance of Zr O2-Y2O3alloys[J].J.Am.Ceram.Soc.,2000,83(7):1703.
    [28]覃家源,闭俊东,胡小兵,韦韡,黄文九.纳米氧化锆粉体制备的研究新进展[J].化工技术与开发,2011,40(9):33.Qin J Y,Bi J D,Hu X B,Wei W,Huang W J.Preparation progress in nanometer zirconia micro-powder[J].Technology&Development of Chemical Industry,2011,40(9):33.
    [29]Yao H C,Wang X W,Dong H.Synthesis and characteristics of nanocrystalline YSZ powder by polyethylene glycol assisted coprecipitation combined with a zeotropicdistillation process and its electrical conductivity[J].Ceram.Int.,2011,37(2):3153.
    [30]邓淑华,温立哲,黄慧民.水热法制备纳米二氧化锆粉体[J].稀有金属,2003,27(4):486.Deng S H,Wen L Z,Huang H M.Preparation of nanosized zirconia powders by hydrothermal method[J].Chinese Journal of Rare Metals,2003,27(4):486.
    [31]Xin X S,LüZ,Ding Z H,Huang X Q,Liu Z G,Sha X Q,Zhang Y H,Su W H.Synthesis and characteristics of nanocrystalline YSZ by homogeneous precipitation and its electrical properties[J].J.Alloys Compd.,2006,425(1):69.
    [32]敖红敏,俞耀伦,龙志奇,黄小卫,刘营.超细锆基复合氧化物粉体制备方法概述[J].稀有金属,2013,37(2):293.Ao H M,Yu Y L,Long Z Q,Huang X W,Liu Y.A brief review on synthesis methods of ultrafine zirconiabased powders[J].Chinese Journal of Rare Metals,2013,37(2):293.
    [33]Bottino M C,zcan M,Valandro L F.Y-TZP ceramic processing from coprecipitated powders:A comparative study with three commercial dental ceramics[J].Dent.Mater.,2008,24:1676.
    [34]Andraz K,Kristoffer K,Peter J,Tomaz K.Nanostructured alumina coatings formed by a dissolution/precipitation process using aid powder hydrolysis[A].Singh M.Nanostructured Material and Nanotechnology III[C].A-mer Ceramic,2010,133.
    [35]黄岳祥,郭存济.氧氯化锆水解产物的热分析研究[J].无机材料学报,1992,(4):483.Huang Y X,Guo C J.Thermal analysis of zirconyl oxychloride hydrolyzate[J].Journal of Inorganic Materials,1992,(4):483.
    [36]Uchiyama H,Takagi K.Solvothermal synthesis of sizecontrolled Zr O2microspheres via hydrolysis of alkoxides modified with acetylacetone[J].Colloids Surf.,2012,403:121.
    [37]Kanade K G,Baeg J O.Synthesis and characterization of nanocrystallined zirconia by hydrothermal method[J].Mater.Res.Bull.,2008,43:723.
    [38]Rizzuti A,Corradi A,Leonelli C,Rosa R,Pielaszek R,Lojkowski W.Microwave technique applied to the hydrothermal synthesis and sintering of calcia stabilized zirconia nanoparticles[J].J.Nanopar.Res.,2010,12(1):327.
    [39]Kuznecova L,Zalite I.Hydrothermal synthesis of Zr O2and its composites[J].Mater.Sci.Eng.,2011,25:12.
    [40]Bokhlmi X,Morales A.Nanophase stabilization in nondoped sol-gel zirconia prepared with different hydrolysis catalysts[J].J.Solid State Chem.,2008,135:28.
    [41]Raileanu M.Sol-gel zirconia nanopowers withα-cyclodextrin as organic additive[J].J.Alloys Compd.,2012,517:157.
    [42]郑育英,黄慧民,刘志平.固-固化学法制备纳米氧化锆及热力学分析[J].硅酸盐通报,2008,27(1):50.Zheng Y Y,Huang H M,Liu Z P.Preparation and thermodynamic analysis of nano-Zr O2by solid-solid state chemical reaction[J].Bulletin of the Chinese Ceramic Society,2008,27(1):50.
    [43]段国荣,李爱梅,杨绪杰,陆路德,汪信.固相悬浮研磨法制备纯氧化锆超细粉[J].微细加工技术,2008,7(2):37.Duan G R,Li A M,Yang X J,Lu L D,Wang X.Preparation of pure zirconia superfine powders by solidstate suspension grinding method[J].Microfabrication Technology,2008,7(2):37.
    [44]Stubican V,Hink R C,Ray S P.Phase equilibria and ordering in the system Zr O2-Y2O3[J].J.Am.Ceramic Society,1978,61(1-2):17.
    [45]Mohammadreza D,Muhamad A M Y,Noordin M Y.Investigation of three steps of hot corrosion process in Y2O3stabilized Zr O2coatings including nano zones[J].J.Rare Earths,2014,32(10):989.
    [46]LüX,Zhao J,Wang X.Novel Bi2O3nanoporous film fabricated by anodic oxidation and its photoelectrochemical performance[J].J.Solid State Electrochem.,2013,17(4):1215.
    [47]Patakangas J,Ma Y,Jing Y.Review and analysis of characterization methods and ionic conductivities for lowtemperature solid oxide fuel cells(LT-SOFC)[J].J.Power Sources,2014,263:315.
    [48]Fergus J W.Electrolytes for solid oxide fuel cells[J].J.Power Sources,2006,162(1):30.
    [49]Badwal S P S,Ciacchi F T,Milosevic D.Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cell operation[J].Solid State Ionics,2000,136-137:91.
    [50]Kharton V,Marques F,Atkinson A.Transport properties of solid oxide electrolyte ceramics:a brief review[J].Solid State Ionics,2004,174(1):135.
    [51]Leoni M,Jones R,Scardi P.Phase stability of scandia-yttria-stabilized zirconia TBCs[J].Surf.Coat.Technol.,1998,108:107.
    [52]Yashima M,Kakihana M,Yoshimura M.Metastablestable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application[J].Solid State Ionics,1996,86:1131.
    [53]Badwal S P S.Effect of alumina and monoclinic zirconia on the electrical-conductivity of Sc2O3-Zr O2compositions[J].J.Mater.Scitific.1983,18(5):3230.
    [54]Thornber M,Bevan D J,Summerville E.Mixed oxides of the type MO2(Fluorite)-M2O3.V.Phase studies in the systems Zr O2-M2O3(M=Sc,Yb,Er,Dy)[J].J.Solid State Chem.,1970,1(3):545.
    [55]Xu G,Zhang Y,Liao C.Doping and grain size effects in nonacrystalline Zr O2-Sc2O3system with complex phase transitions:XRD and Raman studies[J].Phys.Chem.Chem.Phys.,2004,6(5):5410.
    [56]Spirin A I,Vanov V,Nikonov A,Lipilin A,Paranin S,Khrustov V,Spirina A.Scandia-stabilized zirconia doped with yttria:synthesis,properties,and ageing behavior[J].Solid State Ionics,2012,225:448.
    [57]Steven P M,Brett I D,Amy S F.Effects of dopantclustering in cubic zirconia stabilized by yttria and Scandia from molecular dynamics[J].Solid State Ionics,2013,253(3-4):130.
    [58]Andersson M,Paradis H,Yuan J.Review of catalyst materials and catalytic steam reforming reactions in SOFC anodes[J].Int.J.Energy Res.,2011,35(15):1340.
    [59]Terauchi S,Takizawa H,Endo T.High ionic conductivity and high fracture strength of cubic zirconia,(Y0.16-xScx)Zr0.84O1.92/alumina composites[J].Mater.Lett.,1995,23(4):273.
    [60]Chiba R,Yoshimura F,Yamaki J.Ionic conductivity and morphology in Sc2O3and Al2O3doped Zr O2films prepared by the sol-gel method[J].Solid State Ionics,1997,104(3):259.
    [61]Bohnke O,Gunes V,Kravchyk K.Ionic and electronic conductivity of 3 mol%Fe2O3-substituted cubic yttriastabilized Zr O2(YSZ)and scandia-stabilized Zr O2(ScSZ)[J].Solid State Ionics,2014,262:517.
    [62]Yamamoto O,Arati Y,Takeda Y.Electrical conductivity of stabilized zirconia with ytterbia and scandia[J].Solid State Ionics,1995,79:137.
    [63]Politova T I,Irvine J T S.Investigation of scandia-yttria-zirconia system as an electrolyte material for intermediate temperature fuel cells-influence of yttria content in system(Y2O3)x(Sc2O3)(11-x)(Zr O2)89[J].Solid State Ionics,2004,168(1-2):153.
    [64]Mizutani Y,Hisada K,Ukai K.From rare earth doped zirconia to 1 k W solid oxide fuel cell system[J].J.Alloys Compd.,2006,408:518.
    [65]Hirano M,Oda T,Ukai K.Effect of Bi2O3additives in Sc stabilized zirconia electrolyte on a stability of crystal phase and eletrolyte properties[J].Solid State Ionics,2003,158:215.
    [66]Zhou J,Zhang H,Xu H,Xue Q N,Huang X W,Feng Z Y,Long Z Q.Preparation and electrical characterization of ultra-fine powder scandia-stabilized zirconia[J].J.Rare Earths,2016,34(2):181.
    [67]Chen Y,Orlovskaya N,Klimov M.Layered YSZ/SCSZ/YSZ electrolytes for intermediate temperature SOFC Part I:Design and manufacturing[J].Fuel Cells,2012,12(5):722.
    [68]Mahmood A,Bano S,Yu J H.High-performance solid oxide electrolysis cell based on Sc SZ/GDC(scandia-stabilized zirconia/gadolinium-doped ceria)Bi-layered electrolyte and LSCF(lanthanum strontium cobalt ferrite)oxygen electrode[J].Energy,2015,90:344.
    [69]Yao L,Liu W,Ou G.Phase stability and high conductivity of Sc SZ nanofibers:Effect of the crystallite size[J].J.Mater.Chem.A,2015,3(20):10795.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700