不同充液率平板热管性能实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristic of flat plate heat pipe with different filling ratios
  • 作者:王岗 ; 赵耀华 ; 全贞花 ; 王宏燕
  • 英文作者:WANG Gang;ZHAO Yaohua;QUAN Zhenhua;WANG Hongyan;Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Chemical Technology;
  • 关键词:平板热管 ; 微通道 ; 相变 ; 传热 ; 热阻 ; 热导率
  • 英文关键词:flat plate heat pipe;;micro channels;;phase change;;heat transfer;;thermal resistance;;thermal conductivity
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:北京工业大学绿色建筑环境与节能技术北京市重点实验室;
  • 出版日期:2019-05-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.332
  • 基金:国家自然科学基金(51778010)
  • 语种:中文;
  • 页:HGJZ201905007
  • 页数:9
  • CN:05
  • ISSN:11-1954/TQ
  • 分类号:64-72
摘要
搭建了平板热管测试实验台,对不同充液率下热管性能进行了实验研究,并以最佳充液率的热管为研究对象,分析了加热功率、冷却水温及冷却水流速对热管性能的影响。实验结果表明:充液率为20%和30%时热管在各加热功率下展现了良好的性能,最小热阻为0.18℃/W和0.19℃/W,热导率为8158W/(m·℃)和8540W/(m·℃)。由于沸腾换热滞后性,相较于功率增加,功率减少时热管性能更优,同等加热功率条件下蒸发段温度更低。功率增加和功率减少对热管蒸发段热阻影响较大,而冷凝段热阻几乎不受影响。当冷却水温为17℃和22℃时,热管蒸发段温度比冷却水温为7℃和12℃时蒸发段温度低2℃左右。相较于冷却水温22℃时,冷却水温为17℃时热管蒸发段温度能更快达到稳定值。冷却水流速影响蒸发段温度及达到稳定运行的时间,实验表明热管工作的最佳冷却水流速为5.81g/s。
        A test bed on flat plate heat pipe was built in order to study heat pipe performance with different filling ratios. Then the heat pipe with the best filling ratio was taken into account as the research object, the influences of increasing heating power, decreasing heat power, cooling water temperature and mass flow rate on heat pipe performance were analyzed. The results showed that heat pipe with filling ratio of 20% and 30% presented a good performance. The minimum thermal resistance was 0.18℃/W and0.19℃/W, with the maximum effective thermal conductivity of 8158 W/(m ·℃) and 8540 W/(m ·℃),respectively. Compared to heat pipe performance with the increase heating power, the performance with the decrease heating power was better because of boiling hysteresis phenomenon, and evaporation section temperature was lower at the same heating power. The effect on thermal resistance of evaporation section was great with increasing and decreasing heating power, but the thermal resistance of condensation section was almost unaffected. The heat pipe evaporation section temperature with cooling water temperature of 17℃ and 22℃ was about 2℃ lower than that with cooling water temperature of 7℃ and12℃. Compared to cooling water temperature of 22℃, evaporation temperature of heat pipe reached a stable value more quickly when cooling water temperature was 17℃. Thus, the heat pipe performance was best when cooling water temperature was 17℃. Synthesizes evaporation temperature, the time achieving a stable and water pump power consumption, the best mass flow rate for heat pipe was 5.81 g/s.
引文
[1]YAU Y H,AHMADZADEHTALATAPEH M.A review on the application of horizontal heat pipe heat exchangers in air conditioning systems in the tropics[J].Applied Thermal Engineering,2010,30(2/3):77-84.
    [2]ALY W I A,ELBALSHOUNY M A,El-Hameed H M A,et al.Thermal performance evaluation of a helically-micro-grooved heat pipe working with water and aqueous Al2O3nanofluid at different inclination angle and filling ratio[J].Applied Thermal Engineering,2017,110:1294-1304.
    [3]YANG X,YAN Y Y,MULLEN D.Recent developments of lightweight,high performance heat pipes[J].Applied Thermal Engineering,2012,s 33/34(1):1-14.
    [4]ALAWI O A,SIDIK N A C,MOHAMMED H A,et al.Fluid flow and heat transfer characteristics of nanofluids in heat pipes:a review[J].International Communications in Heat&Mass Transfer,2014,56(8):50-62.
    [5]PETERSON G P.An introduction to heat pipes:modeling,testing,and applications[M].New York:Wiley-Interscience,1994.
    [6]JANICKI M,NAPIERALSKI A.Modeling electronic circuit radiation cooling using analytical thermal model[J].Microelectronics Journal,2000,31(9/10):781-785.
    [7]KHRUSTALEV D,FAGHRI A.Heat transfer in the inverted meniscus type evaporator at high heat fluxes[J].International Journal of Heat&Mass Transfer,1995,38(16):3091-3101.
    [8]CHEN S W,HSIEH J C,CHOU C T,et al.Experimental investigation and visualization on capillary and boiling limits of micro-grooves made by different processes[J].Sensors&Actuators A:Physical,2007,139(1):78-87.
    [9]LIPS S,LEFEVRE F,BONJOUR J.Nucleate boiling in a flat grooved heat pipe[J].International Journal of Thermal Sciences,2009,48(7):1273-1278.
    [10]LIPS S,LEFEVRE F,BONJOUR J.Physical mechanisms involved in grooved flat heat pipes:experimental and numerical analyses[J].International Journal of Thermal Sciences,2011,50(7):1243-1252.
    [11]LIPS S,LEFEVRE F,BONJOUR J.Combined effects of the filling ratio and the vapour space thickness on the performance of a flat plate heat pipe[J].International Journal of Heat&Mass Transfer,2010,53(4):694-702.
    [12]SUPOWIT J,HEFLINGER T,STUBBLEBINE M,et al.Designer fluid performance and inclination angle effects in a flat grooved heat pipe[J].Applied Thermal Engineering,2016,101:770-777.
    [13]XU P,LI Q.Visualization study on the enhancement of heat transfer for the groove flat-plate heat pipe with nanoflower coated CuO layer[J].Applied Physics Letters,2017,111(14):141609.
    [14]HOPKINS R,FAGHRI A.Flat miniature heat pipes with micro capillary grooves[J].Transactions of the Asme Serie C:Journal of Heat Transfer,1999,121(1):102-109.
    [15]WONG S C,CHEN C W.Visualization and evaporator resistance measurement for a groove-wicked flat-plate heat pipe[J].International Journal of Heat&Mass Transfer,2012,55(9/10):2229-2234.
    [16]LAUNAY S,SARTRE V,LALLEMAND M.Experimental study on silicon micro-heat pipe arrays[J].Applied Thermal Engineering,2004,24(2):233-243.
    [17]LEBERRE M,LAUNAY S,SARTRE V,et al.Fabrication and experimental investigation of silicon micro heat pipes for cooling electronics[J].Journal of Micromechanics&Microengineering,2003,13(3):436.
    [18]DEAN R N,HARRIS D K,PALKAR A Y,et al.Liquid metal-filled micro heat pipes for thermal management of solid-state devices[J].IEEE Transactions on Industrial Electronics,2012,59(12):4888-4894.
    [19]SOLOMON A B,KUMAR A M R,RAMACHANDRAN K,et al.Characterisation of a grooved heat pipe with an anodised surface[J].Heat&Mass Transfer,2016,53(3):1-11.
    [20]KIM H J,LEE S H,KIM S B,et al.The effect of nanoparticle shape on the thermal resistance of a flat-plate heat pipe using acetone-based Al2O3nanofluids[J].International Journal of Heat&Mass Transfer,2016,92:572-577.
    [21]HAO X H,PENG B,CHEN Y,et al.Experimental investigation on heat transfer performance of a flat plate heat pipe with MWCNTS-acetone nanofluid[J].Journal of Heat Transfer-transactions of the ASME,2017,139(6):062001.
    [22]ALIJANI H,?ETIN B,AKKUS Y,et al.Effect of design and operating parameters on the thermal performance of aluminum flat grooved heat pipes[J].Applied Thermal Engineering,2018,132:174-187.
    [23]STUBBLEBINE M J,CATTON I.Passivation and performance of inorganic aqueous solutions in a grooved aluminum flat heat pipe[J].Journal of Heat Transfer,2015,137(5):052901.
    [24]TANG H,TANG Y,YUAN W,et al.Fabrication and capillary characterization of axially micro-grooved wicks for aluminium flatplate heat pipes[J].Applied Thermal Engineering,2018,129:907-915.
    [25]王宏燕,赵耀华.平板微热管阵列垂直传热的数值分析[J].化工学报,2014,65(2):508-515.WANG H Y,ZHAO Y H.Numerical investigation on heat transfer of vertical micro-heat pipe arrays[J].CIESC Journal,2014,65(2):508-515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700