水与大火成岩省的形成
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Link between Mantle Water and Generation of Large Igneous Provinces
  • 作者:陈欢 ; 顾笑龑 ; 夏群科
  • 英文作者:CHEN Huan;GU Xiao-yan;XIA Qun-ke;School of Earth Sciences,Zhejiang University;
  • 关键词:水含量 ; 大火成岩省 ; 大陆溢流玄武岩 ; 岩浆作用 ; 单斜辉石斑晶
  • 英文关键词:water content;;large igneous province;;continental flood basalts;;magmatism;;clinopyroxene phenocryst
  • 中文刊名:KYDH
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:浙江大学地球科学学院;
  • 出版日期:2019-03-10
  • 出版单位:矿物岩石地球化学通报
  • 年:2019
  • 期:v.38
  • 语种:中文;
  • 页:KYDH201902008
  • 页数:13
  • CN:02
  • ISSN:52-1102/P
  • 分类号:52-63+249
摘要
大火成岩省(LIPs)是发生在板块内部的超大规模岩浆活动的产物,其成因一直是地学界研究的前沿和热点。影响LIPs形成的主要因素包括温度、压力、源岩性质和源区水含量,虽然已积累较多的成果,但对于地幔源区中的水是否影响及如何影响LIPs的形成,目前还知之甚少。本文回顾了已有的实测LIPS水含量研究工作,并介绍了一种新的分析手段,即利用傅里叶变换红外光谱(FTIR)测定早期结晶的单斜辉石斑晶水含量,然后结合水在单斜辉石斑晶和熔体间的分配系数来反演得到LIPs的"原始"水含量。通过塔里木和峨眉山两个大火成岩省的研究实例,综合评价了温度、压力、源岩性质和水含量这4个因素的影响,指出很可能只有当这些因素同时具备了才能产生LIPs。
        Large igneous provinces(LIPs) are products of the ultra-large-scale intraplate magmatism. The genesis of LIPs has always been the frontier and hot-spot in geoscience community. Theoretically, temperature, pressure, lithological feature and water content of the source are main factors influencing the generation of LIPs. The former three factors have been extensively studied by previous researches, but whether or not and how the water in mantle had influenced the generation of LIPs are known little at present. In this paper, we have reviewed previous studies on water content of the LIPs, and introduced a new method for estimating the "primary" water content of the LIPs through the inversion by using the measured H_2O content of early-crystallized clinopyroxene phenocryst using FTIR and the partition coefficient of water between the clinopyroxene phenocryst and melt. On the basis of two case studies of the Tarim and Emeishan LIPs, we have comprehensively evaluated the effects of temperature, pressure, lithological feature and water content of the source, and pointed out that the LIPs could be only produced when all these factors are simultaneously presented.
引文
Asimow P D, Dixon J E, Langmuir C H. 2004. A hydrous melting and fractionation model for mid‐ocean ridge basalts: Application to the Mid‐Atlantic Ridge near the Azores. Geochemistry, Geophysics, Geosystems, 5(1): Q01E16
    Bell D R, Rossman G R. 1992. Water in Earth's mantle: The role of nominally anhydrous minerals. Science, 255(5050): 1391-1397
    Bizimis M, Peslier A H. 2015. Water in Hawaiian garnet pyroxenites: Implications for water heterogeneity in the mantle. Chemical Geology, 397: 61-75
    Bryan S E, Ernst R E. 2008. Revised definition of large igneous provinces (LIPs). Earth-Science Reviews, 86(1-4): 175-202
    Cabato J A, Stefano C J, Mukasa S B. 2015. Volatile concentrations in olivine-hosted melt inclusions from the Columbia River flood basalts and associated lavas of the Oregon Plateau: Implications for magma genesis. Chemical Geology, 392: 59-73
    Campbell I H. 2001. Identification of ancient mantle plumes. In: Ernst R E, Buchan K L, eds. Mantle Plumes: Their identification Through Time. Boulder, CO: Geological Society of America, 5-21
    Chen H, Xia Q K, Ingrin J, Jia Z B, Feng M. 2015a. Changing recycled oceanic components in the mantle source of the Shuangliao Cenozoic basalts, NE China: New constraints from water content. Tectonophysics, 650: 113-123
    Chen H, Xia Q K, Ingrin J. 2015b. Water content of the Xiaogulihe ultrapotassic volcanic rocks, NE China: Implications for the source of the potassium-rich component. Science Bulletin, 60(16): 1468-1470
    Chen H, Xia Q K, Ingrin J, Deloule E, Bi Y. 2017. Heterogeneous source components of intraplate basalts from NE China induced by the ongoing Pacific slab subduction. Earth and Planetary Science Letters, 459: 208-220
    Chen Y, Provost A, Schiano P, Cluzel N. 2011. The rate of water loss from olivine-hosted melt inclusions. Contributions to Mineralogy and Petrology, 162(3): 625-636
    Chenet A L, Quidelleur X, Fluteau F, Courtillot V, Bajpai S. 2007. 40K-40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration. Earth and Planetary Science Letters, 263(1-2): 1-15
    Chung S L, Jahn B M. 1995. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology, 23(10): 889-892
    Coffin M F, Eldholm O. 1994. Large igneous provinces: Crustal structure, dimensions, and external consequences. Reviews of Geophysics, 32(1): 1-36
    Courtillot V, Besse J, Vandamme D, Montigny R, Jaeger J J, Cappetta H. 1986. Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth and Planetary Science Letters, 80(3-4): 361-374
    Danyushevsky L V, Falloon T J, Sobolev A V, Crawford A J, Carroll M, Price R C. 1993. The H2O content of basalt glasses from southwest Pacific back-arc basins. Earth and Planetary Science Letters, 117(3-4): 347-362
    Danyushevsky L V, Eggins S M, Falloon T J, Christie D M. 2000. H2O abundance in depleted to moderately enriched mid-ocean ridge magmas; Part I: Incompatible behaviour, implications for mantle storage, and origin of regional variations. Journal of Petrology, 41(8): 1329-1364
    Dixon J E, Stolper E, Delaney J R. 1988. Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses. Earth and Planetary Science Letters, 90(1): 87-104
    Dixon J E, Clague D A, Wallace P, Poreda R. 1997. Volatiles in alkalic basalts form the North Arch Volcanic Field, Hawaii: Extensive degassing of deep submarine-erupted alkalic series lavas. Journal of Petrology, 38(7): 911-939
    Dixon J E, Clague D A. 2001. Volatiles in basaltic glasses from Loihi Seamount, Hawaii: Evidence for a relatively dry plume component. Journal of Petrology, 42(3): 627-654
    Dixon J E, Leist L, Langmuir C, Schilling J G. 2002. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature, 420(6914): 385-389
    Dixon J E, Dixon T H, Bell D R, Malservisi R. 2004. Lateral variation in upper mantle viscosity: Role of water. Earth and Planetary Science Letters, 222(2): 451-467
    Dobson P F, Skogby H, Rossman G R. 1995. Water in boninite glass and coexisting orthopyroxene: Concentration and partitioning. Contributions to Mineralogy and Petrology, 118(4): 414-419
    Ernst R E, Buchan K L, Campbell I H. 2005. Frontiers in large igneous province research. Lithos, 79(3-4): 271-297
    Ernst R E. 2014. Large igneous provinces. Cambridge, UK: Cambridge University Press, 1-653
    Farmer G L. 2014. Continental basaltic rocks. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 75-110
    Gaetani G A, Grove T L. 1998. The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology, 131(4): 323-346
    Gaetani G A, O’Leary J A, Shimizu N, Bucholz C E, Newville M. 2012. Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology, 40(10): 915-918
    Green D H. 2015. Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth’s upper mantle. Physics and Chemistry of Minerals, 42(2): 95-122
    Gurenko A A, Kamenetsky V S, Kerr A C. 2016. Oxygen isotopes and volatile contents of the Gorgona komatiites, Colombia: A confirmation of the deep mantle origin of H2O. Earth and Planetary Science Letters, 454: 154-165
    Hamada M, Kawamoto T, Takahashi E, Fujii T. 2011. Polybaric degassing of island arc low-K tholeiitic basalt magma recorded by OH concentrations in Ca-rich plagioclase. Earth and Planetary Science Letters, 308(1-2): 259-266
    Hanski E, Kamenetsky V S, Luo Z Y, Xu Y G, Kuzmin D V. 2010. Primitive magmas in the Emeishan large igneous province, southwestern China and northern Vietnam. Lithos, 119(1-2): 75-90
    He B, Xu Y G, Chung S L, Xiao L, Wang Y M. 2003. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters, 213(3-4): 391-405
    He B, Xu Y G, Huang X L, Luo Z Y, Shi Y R, Yang Q J, Yu S Y. 2007. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth and Planetary Science Letters, 255(3-4): 306-323
    Heinonen J S, Luttinen A V. 2008. Jurassic dikes of Vestfjella, western Dronning Maud Land, Antarctica: Geochemical tracing of ferropicrite sources. Lithos, 105(3-4): 347-364
    Heinonen J S, Luttinen A V. 2010. Mineral chemical evidence for extremely magnesian subalkaline melts from the Antarctic extension of the Karoo large igneous province. Mineralogy and Petrology, 99(3-4): 201-217
    Hooper P R. 2000. Flood basalt provinces. In: Sigurdsson H, ed. Encyclopedia of Volcanoes. San Diego, CA: Academic Press, 345-359
    Ingrin J, Skogby H. 2000. Hydrogen in nominally anhydrous upper-mantle minerals: Concentration levels and implications. European Journal of Mineralogy, 12(3): 543-570
    Ivanov A V, Litasov K D. 2014. The deep water cycle and flood basalt volcanism. International Geology Review, 56(1): 1-14
    Ivanov A V, Mukasa S B, Kamenetsky V S, Ackerson M, Demonterova E I, Pokrovsky B G, Vladykin N V, Kolesnichenko M V, Litasov K D, Zedgenizov D A. 2018. Volatile concentrations in olivine-hosted melt inclusions from meimechite and melanephelinite lavas of the Siberian Traps Large Igneous Province: Evidence for flux-related high-Ti, high-Mg magmatism. Chemical Geology, 483: 442-462
    Jiang C Y, Li Y Z, Zhang P B, Ye S F. 2006. Petrogenesis of Permian basalts on the western margin of the Tarim basin, China. Russian Geology and Geophysics, 47(2): 232-241
    Kamenetsky V S, Chung S L, Kamenetsky M B, Kuzmin D V. 2012. Picrites from the Emeishan Large Igneous Province, SW China: A compositional continuum in primitive magmas and their respective mantle sources. Journal of Petrology, 53(10): 2095-2113
    Kamo S L, Czamanske G K, Amelin Y, Fedorenko V A, Davis D W, Trofimov V R. 2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters, 214(1-2): 75-91
    Katz R F, Spiegelman M, Langmuir C H. 2003. A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosystems, 4(9): 1073
    Kendrick M A, Hémond C, Kamenetsky V S, Danyushevsky L, Devey C W, Rodemann T, Jackson M G, Perfit M R. 2017. Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere. Nature Geoscience, 10(3): 222-228
    Kohlstedt D L, Keppler H, Rubie D C. 1996. Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4. Contributions to Mineralogy and Petrology, 123(4): 345-357
    Kovács I, Hermann J, O’Neill H S C, Gerald J F, Sambridge M, Horváth G. 2008. Quantitative absorbance spectroscopy with unpolarized light: Part II. Experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra. American Mineralogist, 93(5-6): 765-778
    Leeman W P, Schutt D L, Hughes S S. 2009. Thermal structure beneath the Snake River Plain: Implications for the Yellowstone hotspot. Journal of Volcanology and Geothermal Research, 188(1-3): 57-67
    Li Y Q, Li Z L, Sun Y L, Santosh M, Langmuir C H, Chen H L, Yang S F, Chen Z X, Yu X. 2012. Platinum-group elements and geochemical characteristics of the Permian continental flood basalts in the Tarim Basin, northwest China: Implications for the evolution of the Tarim Large Igneous Province. Chemical Geology, 328: 278-289
    Li Y Q, Li Z L, Yu X, Langmuir C H, Santosh M, Yang S F, Chen H L, Tang Z L, Song B, Zou S Y. 2014. Origin of the early Permian zircons in Keping basalts and magma evolution of the Tarim Large Igneous Province (northwestern China). Lithos, 204: 47-58
    Li Z L, Chen H L, Song B, Li Y Q, Yang S F, Yu X. 2011. Temporal evolution of the Permian large igneous province in Tarim Basin in northwestern China. Journal of Asian Earth Sciences, 42(5): 917-927
    Libowitzky E, Rossman G R. 1996. Principles of quantitative absorbance measurements in anisotropic crystals. Physics and Chemistry of Minerals, 23(6): 319-327
    Liu J, Xia Q K, Deloule E, Ingrin J, Chen H, Feng M. 2015a. Water content and oxygen isotopic composition of alkali basalts from the Taihang Mountains, China: Recycled oceanic components in the mantle source. Journal of Petrology, 56(4): 681-702
    Liu J, Xia Q K, Deloule E, Chen H, Feng M. 2015b. Recycled oceanic crust and marine sediment in the source of alkali basalts in Shandong, eastern China: Evidence from magma water content and oxygen isotopes. Journal of Geophysical Research: Solid Earth, 120(12): 8281-8303
    Liu J, Xia Q K, Kuritani T, Hanski E, Yu H R. 2017. Mantle hydration and the role of water in the generation of large igneous provinces. Nature Communications, 8(1): 1824
    Liu S C, Xia Q K, Choi S H, Deloule E, Li P, Liu J. 2016. Continuous supply of recycled Pacific oceanic materials in the source of Cenozoic basalts in SE China: The Zhejiang case. Contributions to Mineralogy and Petrology, 171(12): 100
    Marty B. 2012. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth and Planetary Science Letters, 313-314: 56-66
    Michael P. 1995. Regionally distinctive sources of depleted MORB: Evidence from trace elements and H2O. Earth and Planetary Science Letters, 131(3-4): 301-320
    Michael P J. 1988. The concentration, behavior and storage of H2O in the suboceanic upper mantle: Implications for mantle metasomatism. Geochimica et Cosmochimica Acta, 52(2): 555-566
    Michael P J. 1999. Implications for magmatic processes at Ontong Java Plateau from volatile and major element contents of Cretaceous basalt glasses. Geochemistry, Geophysics, Geosystems, 1(12): 1008
    Nichols A R L, Carroll M R, H?skuldsson á. 2002. Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts. Earth and Planetary Science Letters, 202(1): 77-87
    Nisbet E G, Cheadle M J, Arndt N T, Bickle M J. 1993. Constraining the potential temperature of the Archaean mantle: A review of the evidence from komatiites. Lithos, 30(3-4): 291-307
    Ohtani E. 2015. Hydrous minerals and the storage of water in the deep mantle. Chemical Geology, 418: 6-15
    O'Leary J A, Gaetani G A, Hauri E H. 2010. The effect of tetrahedral Al3+ on the partitioning of water between clinopyroxene and silicate melt. Earth and Planetary Science Letters, 297(1-2): 111-120
    Panina L I, Usoltseva L M. 2008. Alkaline-ultrabasic mantle-derived magmas, their sources, and crystallization features: Data of melt inclusion studies. Lithos, 103(3-4): 431-444
    Panina L I, Motorina I V. 2013. Meimechites, porphyritic alkaline picrites, and melanephelinites of Siberia: Conditions of crystallization, parental magmas, and sources. Geochemistry International, 51(2): 109-128
    Peate I U, Bryan S E. 2008. Re-evaluating plume-induced uplift in the Emeishan large igneous province. Nature Geoscience, 1(9): 625-629
    Puchtel I S, Walker R J, Brandon A D, Nisbet E G. 2009. Pt-Re-Os and Sm-Nd isotope and HSE and REE systematics of the 2.7 Ga Belingwe and Abitibi komatiites. Geochimica et Cosmochimica Acta, 73(20):, 6367-6389
    Qin K Z, Su B X, Sakyi P A, Tang D M, Li X H, Sun H, Xiao Q H, Liu P P. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a ca. 280 Ma mantle plume. American Journal of Science, 311(3): 237-260
    Reichow M K, Saunders A D, White R V, Pringle M S, Al'Mukhamedov A I, Medvedev A I, Kirda N P. 2002. 40Ar/39Ar dates from the West Siberian Basin: Siberian flood basalt province doubled. Science, 296(5574): 1846-1849
    Ren Z Y, Wu Y D, Zhang L, Nichols A R L, Hong L B, Zhang Y H, Zhang Y, Liu J Q, Xu Y G. 2017. Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions. Geochimica et Cosmochimica Acta, 208: 63-85
    Renne P R, Basu A R. 1991. Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary. Science, 253(5016): 176-179
    Rossman G R. 2006. Analytical methods for measuring water in nominally anhydrous minerals. Reviews in Mineralogy and Geochemistry, 62(1): 1-28
    Saal A E, Hauri E H, Langmuir C H, Perfit M R. 2002. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle. Nature, 419(6906): 451-455
    Sambridge M, Gerald J F, Kovács I, O’Neill H S C, Hermann J. 2008. Quantitative absorbance spectroscopy with unpolarized light: Part I. Physical and mathematical development. American Mineralogist, 93(5-6): 751-764
    Shangguan S M, Peate I U, Tian W, Xu Y G. 2016. Re-evaluating the geochronology of the Permian Tarim magmatic province: Implications for temporal evolution of magmatism. Journal of the Geological Society, 173(1): 228-239
    Shellnutt J G. 2014. The Emeishan large igneous province: A synthesis. Geoscience Frontiers, 5(3): 369-394
    Shimizu K, Komiya T, Hirose K, Shimizu N, Maruyama S. 2001. Cr-spinel, an excellent micro-container for retaining primitive melts-implications for a hydrous plume origin for komatiites. Earth and Planetary Science Letters, 189(3-4): 177-188
    Shimizu K, Shimizu N, Komiya T, Suzuki K, Maruyama S, Tatsumi Y. 2009. CO2-rich komatiitic melt inclusions in Cr-spinels within beach sand from Gorgona Island, Colombia. Earth and Planetary Science Letters, 288(1-2): 33-43
    Simons K, Dixon J, Schilling J G, Kingsley R, Poreda R. 2002. Volatiles in basaltic glasses from the Easter‐Salas y Gomez Seamount Chain and Easter Microplate: Implications for geochemical cycling of volatile elements. Geochemistry, Geophysics, Geosystems, 3(7): 1-29
    Sisson T W, Layne G D. 1993. H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth and Planetary Science Letters, 117(3-4): 619-635
    Smyth J R. 1994. A crystallographic model for hydrous wadsleyite (β-Mg2SiO4): An ocean in the Earth’s interior. American Mineralogist, 79: 1021-1024
    Sobolev A V, Chaussidon M. 1996. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H2O storage and recycling in the mantle. Earth and Planetary Science Letters, 137(1-4): 45-55
    Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A, Garcia M O, Gurenko A A, Kamenetsky V S, Kerr A C, Krivolutskaya N A, Matvienkov V V, Nikogosian I K, Rocholl A, Sigurdsson I A, Sushchevskaya N M, Teklay M. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823): 412-417
    Sobolev A V, Krivolutskaya N A, Kuzmin D V. 2009a. Petrology of the parental melts and mantle sources of Siberian trap magmatism. Petrology, 17(3): 253-286
    Sobolev A V, Sobolev S V, Kuzmin D V, Malitch K N, Petrunin A G. 2009b. Siberian meimechites: Origin and relation to flood basalts and kimberlites. Russian Geology and Geophysics, 50(12): 999-1033
    Sobolev A V, Asafov E V, Gurenko A A, Arndt N T, Batanova V G, Portnyagin M V, Garbe-Sch?nberg D, Krasheninnikov S P. 2016. Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature, 531(7596): 628-632
    Sobolev S V, Sobolev A V, Kuzmin D V, Krivolutskaya N A, Petrunin A G, Arndt N T, Radko V A, Vasiliev Y R. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature, 477(7364): 312-316
    Stefano C J, Mukasa S B, Andronikov A, Leeman W P. 2011. Water and other volatile systematics of olivine-hosted melt inclusions from the Yellowstone hotspot track. Contributions to Mineralogy and Petrology, 161(4): 615-633
    Thiede D S, Vasconcelos P M. 2010. Paraná flood basalts: Rapid extrusion hypothesis confirmed by new 40Ar/39Ar results. Geology, 38(8): 747-750
    Tian W, Campbell I H, Allen C M, Guan P, Pan W Q, Chen M M, Yu H J, Zhu W P. 2010. The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions to Mineralogy and Petrology, 160(3): 407-425
    Trela J, Gazel E, Sobolev A V, Moore L, Bizimis M, Jicha B, Batanova V G. 2017. The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs. Nature Geoscience, 10(6): 451-456
    Turner M, Ireland T, Hermann J, Holden P, Padrón-Navarta J A, Hauri E H, Turner S. 2015. Sensitive high resolution ion microprobe-stable isotope (SHRIMP-SI) analysis of water in silicate glasses and nominally anhydrous reference minerals. Journal of Analytical Atomic Spectrometry, 30(8): 1706-1722
    Wade J A, Plank T, Hauri E H, Kelley K A, Roggensack K, Zimmer M. 2008. Prediction of magmatic water contents via measurement of H2O in clinopyroxene phenocrysts. Geology, 36(10): 799-802
    Wallace P J. 1998. Water and partial melting in mantle plumes: Inferences from the dissolved H2O concentrations of Hawaiian basaltic magmas. Geophysical Research Letters, 25(19): 3639-3642
    Wallace P J. 2002. Volatiles in submarine basaltic glasses from the Northern Kerguelen Plateau (ODP Site 1140): Implications for source region compositions, magmatic processes, and plateau subsidence. Journal of Petrology, 43(7): 1311-1326
    Wallace P J. 2005. Volatiles in subduction zone magmas: Concentrations and fluxes based on melt inclusion and volcanic gas data. Journal of Volcanology and Geothermal Research, 140(1-3): 217-240
    Wang X C, Wilde S A, Li Q L, Yang Y N. 2015. Continental flood basalts derived from the hydrous mantle transition zone. Nature Communications, 6: 7700
    Wang X C, Wilde S A, Xu B, Pang C J. 2016. Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination. Lithos, 261: 5-45
    Wei X, Xu Y G, Feng Y X, Zhao J X. 2014. Plume-lithosphere interaction in the generation of the Tarim large igneous province, NW China: Geochronological and geochemical constraints. American Journal of Science, 314(1): 314-356
    Wei X, Xu Y G, Luo Z Y, Zhao J X, Feng Y X. 2015. Composition of the Tarim mantle plume: Constraints from clinopyroxene antecrysts in the early Permian Xiaohaizi dykes, NW China. Lithos, 230: 69-81
    Xia Q K, Liu J, Liu S C, Kovács I, Feng M, Dang L. 2013. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth and Planetary Science Letters, 361: 85-97
    Xia Q K, Bi Y, Li P, Tian W, Wei X, Chen H L. 2016. High water content in primitive continental flood basalts. Scientific Reports, 6: 25416
    Xu Y G, Chung S L, Jahn B M, Wu G Y. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos, 58(3-4): 145-168
    Xu Y G, He B, Chung S L, Menzies M A, Frey F A. 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology, 32(10): 917-920
    Xu Y G, Wei X, Luo Z Y, Liu H Q, Cao J. 2014. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model. Lithos, 204: 20-35
    Yu X, Yang S F, Chen H L, Chen Z Q, Li Z L, Batt G E, Li Y Q. 2011. Permian flood basalts from the Tarim Basin, Northwest China: SHRIMP zircon U-Pb dating and geochemical characteristics. Gondwana Research, 20(2-3): 485-497
    Zhang C L, Li X H, Li Z X, Ye H M, Li C N. 2008. A Permian layered intrusive complex in the Western Tarim Block, northwestern China: Product of a ca. 275-Ma mantle plume? The Journal of Geology, 116(3): 269-287
    Zhang C L, Li Z X, Li X H, Xu Y G, Zhou G, Ye H M. 2010a. A Permian large igneous province in Tarim and Central Asian orogenic belt, NW China: Results of a ca. 275 Ma mantle plume?. GSA Bulletin, 122(11-12): 2020-2040
    Zhang C L, Xu Y G, Li Z X, Wang H Y, Ye H M. 2010b. Diverse Permian magmatism in the Tarim Block, NW China: Genetically linked to the Permian Tarim mantle plume? Lithos, 119(3-4): 537-552
    Zhang D Y, Zhou T F, Yuan F, Jowitt S M, Fan Y, Liu S. 2012. Source, evolution and emplacement of Permian Tarim Basalts: Evidence from U-Pb dating, Sr-Nd-Pb-Hf isotope systematics and whole rock geochemistry of basalts from the Keping area, Xinjiang Uygur Autonomous region, northwest China. Journal of Asian Earth Sciences, 49: 175-190
    Zhang Y T, Liu J Q, Guo Z F. 2010. Permian basaltic rocks in the Tarim basin, NW China: Implications for plume-lithosphere interaction. Gondwana Research, 18(4): 596-610
    Zhang Z C, Mahoney J J, Mao J W, Wang F S. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997-2019
    Zhou M F, Zhao J H, Jiang C Y, Gao J F, Wang W, Yang S H. 2009. OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China: Implications for a possible Permian large igneous province. Lithos, 113(3-4): 583-594
    陈汉林, 杨树锋, 董传万, 贾承造, 魏国齐, 汪振国. 1997. 塔里木盆地二叠纪基性岩带的确定及大地构造意义. 地球化学, 26(6): 77-87
    姜常义, 张蓬勃, 卢登蓉, 白开寅, 王瑶培, 唐索寒, 王进辉, 杨淳. 2004. 柯坪玄武岩的岩石学、地球化学、Nd、Sr、Pb同位素组成与岩石成因. 地质论评, 50(5): 492-500
    李洪颜, 黄小龙, 李武显, 曹俊, 贺鹏丽, 徐义刚. 2013. 塔西南其木干早二叠世玄武岩的喷发时代及地球化学特征. 岩石学报, 29(10): 3353-3368
    李勇, 苏文, 孔屏, 钱一雄, 张克银, 张明利, 陈跃, 蔡习尧, 尤东华. 2007. 塔里木盆地塔中-巴楚地区早二叠世岩浆岩的LA-ICP-MS锆石U-Pb年龄. 岩石学报, 23(5): 1097-1107
    厉子龙, 励音骐, 邹思远, 孙浩伟, 李东旭. 2017. 塔里木早二叠世大火成岩省的时空特征和岩浆动力学. 矿物岩石地球化学通报, 36(3): 418-431
    邵铁全, 朱彦菲, 靳刘圆, 朱志新, 李平, 刘鑫. 2015. 塔里木西南缘棋盘河乡玄武岩锆石U-Pb年代学和地球化学研究. 地质科学, 50(4): 1120-1133
    夏群科, 刘佳, 陈欢, 刘少辰, 冯敏. 2015. 大陆玄武岩原始水含量的测定及其对源区组分的制约. 岩石矿物学杂志, 34(3): 371-381
    徐义刚, 何斌, 罗震宇, 刘海泉. 2013. 我国大火成岩省和地幔柱研究进展与展望. 矿物岩石地球化学通报, 32(1): 25-39
    杨树锋, 陈汉林, 厉子龙, 励音骐, 余星, 李东旭, 孟立丰. 2014. 塔里木早二叠世大火成岩省. 中国科学: 地球科学, 44(2): 187-199
    张传林, 周刚, 王洪燕, 董永观, 丁汝福. 2010. 塔里木和中亚造山带西段二叠纪大火成岩省的两类地幔源区. 地质通报, 29(6): 779-794
    张洪安, 李曰俊, 吴根耀, 苏文, 钱一雄, 孟庆龙, 蔡习尧, 韩利军, 赵岩, 刘亚雷. 2009. 塔里木盆地二叠纪火成岩的同位素年代学. 地质科学, 44(1): 137-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700