灌溉方式和灌水下限对温室青茄生长、耗水特性及产量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Critical Soil Moistures for Different Drip Irrigations on Growth,Water Consumption and Yield of Greenhouse Green Eggplant
  • 作者:胡兰 ; 翟国亮 ; 邓忠 ; 蔡九茂 ; 张文正 ; 高剑民
  • 英文作者:HU Lan;ZHAI Guoliang;DENG Zhong;CAI Jiumao;ZHANG Wenzheng;GAO Jianmin;Chinese Academy of Agricultural Sciences Farmland Irrigation Research Institute/Key Laboratory of Water-saving Agriculture Project of Ministry of Agriculture;Graduate School of Chinese Academy of Agricultural Sciences;
  • 关键词:滴灌 ; 灌水下限 ; 生长特性 ; 耗水量 ; 产量
  • 英文关键词:drip irrigation;;critical soil moisture;;plant growth;;water consumption;;yield
  • 中文刊名:GGPS
  • 英文刊名:Journal of Irrigation and Drainage
  • 机构:中国农业科学院农田灌溉研究所/农业部节水灌溉工程重点实验室;中国农业科学院研究生院;
  • 出版日期:2019-02-15
  • 出版单位:灌溉排水学报
  • 年:2019
  • 期:v.38
  • 基金:中国农业科学院基本科研业务费专项(Y2017XM08)
  • 语种:中文;
  • 页:GGPS201902003
  • 页数:6
  • CN:02
  • ISSN:41-1337/S
  • 分类号:18-23
摘要
【目的】探明插入式地下滴灌和地表滴灌条件下,不同灌水下限对温室新乡糙青茄(Solanum melongena L.)的生长、耗水特性及产量的影响。【方法】试验设置2种灌溉方式:插入式地下滴灌(SDI-R)、地表滴灌(DI)。灌水下限设置4个水平:开花坐果期60%θF、成熟采摘期60%θF(F60M60);开花坐果期60%θF、成熟采摘期70%θF(F60M70);开花坐果期70%θF、成熟采摘期60%θF(F70M60);开花坐果期70%θF、成熟采摘期70%θF(F70M70),处理简称为T1(DI,F60M60)、T2(SDI-R,F60M60)、T3(DI,F60M70)、T4(SDI-R,F60M70)、T5(DI,F70M60)、T6(SDI-R,F70M60)、T7(DI,F70M70)、T8(SDI-R,F70M70)。研究了不同处理对温室青茄的株高、根干物质、产量、耗水特性及水分利用效率的影响。【结果】SDI-R处理的青茄株高和总根干质量均高于DI处理的;SDI-R处理的总耗水量和各生育阶段的耗水量均小于DI处理的,2种灌水方式中T7处理和T8处理总耗水量最大,分别为338.09 mm和331.25mm,4种灌水下限下,DI处理较SDI-R处理分别高2.06%~16.67%;SDI-R灌水方式中的T4处理的产量和水分利用效率最大,分别为56 046.30 kg/hm~2和20.43 kg/m3,DI条件下T7处理的产量和水分利用效率最高,分别为51 546.30kg/hm~2和15.24 kg/m3,T4处理显著高于T7处理(P<0.05)。【结论】插入式地下滴灌相对于地表滴灌能达到增产节水的目的,且插入式地下滴灌开花坐果期和成熟采摘期的灌水下限宜分别设为田间持水率的60%和70%。
        【Objective】The critical moisture for irrigation is a parameter in determining irrigation schedule, and this paper studies its effect on growth, water consumption and yield of greenhouse eggplant under surface drip irrigation and plug-in subsurface drip irrigation.【Method】The plug-in subsurface drip irrigation was to insert the emitter into the root zone(SDI-R) and the surface drip irrigation was to drip water over the soil surface(DI). We examined four critical soil moisture: 60% of the field capacity(θF) at flowering/fruit-setting stage and 60% of θF at maturing stage(F60 M60), 60% of θFat flowering/fruit-setting stage and 70% of θFat maturing stage(F60 M70), 70% of θFat flowering/fruit-setting stage and 60% of θFat maturing stage(F70 M60), 70% of θFat flowering/fruit-setting stage and 70% of θFat maturing stage(F70 M70). In each treatment, we measured plant height, root dry matter, yield, water consumption and water use efficiency.【Result】Both plant height and total dry root mass were higher under SDI-R than under DI, and the total water consumption and water consumption during each growth stage were lower under SDI-R than under DI. The maximum total water consumption under DI + F70 M70 and SDI-R + F70 M70 was 338.09 mm and 331.25 mm respectively, lower than under other treatments. Under the four critical soil moistures, the water consumption under DI was 2.06% to 16.67%, higher than those under SDI-R. SDI-R + F60 M70 gave the highest yield and water use efficiency at 56 046.30 kg/hm~2 and20.43 kg/m3 respectively. Under DI, the yield under F70 M70 was 51 546.30 kg/hm~2, with the highest water use efficiency of 15.24 kg/m3.【Conclusion】Plug-in subsurface drip irrigation increased yield and water use efficiency compared to surface drip irrigation in all treatments, especially when the critical moisture at flowering/fruit-setting stage was 60% of θFand at maturing stage was 70% of θF.
引文
[1]魏永霞,马瑛瑛,刘慧,等.调亏灌溉下滴灌玉米植株与土壤水分及节水增产效应[J].农业机械学报, 2018, 49(3):252-260.
    [2]仝炳伟,张娜,鲍子云.地下滴灌条件下不同水肥处理对苜蓿生长和产量的影响[J].灌溉排水学报, 2018, 37(3):35-40.
    [3]冯俊杰,费良军,翟国亮,等.插入式地下滴水器的研制与水力性能试验分析[J].节水灌溉, 2009(8):17-20,25.
    [4]冯俊杰,翟国亮,仵峰,等.可移动地下滴灌装置的研制开发[J].中国农村水利水电, 2007(11):34-36.
    [5] PLEBAN S, SHACHAM D, LOFTIS J. Minimizing capital costs of multi-outlet pipelines[J]. Journal of Irrigation&Drainage Engineering, 1984, 110(2):165-178.
    [6]冯俊杰,李明臣,翟国亮,等.移动插入式灌水器的结构研究与抗堵塞试验分析[J].中国农村水利水电, 2008(11):39-42.
    [7]刘浩,孙景生,王聪聪.土壤水分状况对温室青茄水分利用和外观品质的影响[J].中国生态农业学报, 2011, 19(4):812-817.
    [8] MOFOKE A L E, ADEXUMI J K, BABATUNDE F E, et al. Yield of tomato grown under continuous-flow drip irrigation in Bauchi state of Nigeria[J].Agricultural Water Management, 2006, 84(1/2):166-172.
    [9] ERTEK A, SENSOY S, GEDIK?BRAHIM, et al. Irrigation scheduling based on pan evaporation values for cucumber(Cucumis sativus L.)grown under field conditions[J]. Agricultural Water Management, 2006, 81(1/2):159-172.
    [10]段爱旺.水分利用效率的内涵及使用中需要注意的问题[J].灌溉排水学报, 2005, 24(1):8-11.
    [11] KANBER R, YAZAR A, KOKSAL H, et al. Evapotranspiration of grape fruit in the Eastern Mediterranean region of Turkey[J].Scientia Horticulturae,1992, 52(1/2):53-62.
    [12]孔清华,李光永,王永红,等.不同施肥条件和滴灌方式对青椒生长的影响[J].农业工程学报, 2010, 26(7):21-25.
    [13]王京伟,牛文全,郭丽丽,等.适宜的毛管埋深提高温室番茄品质及产量[J].农业工程学报, 2017, 33(20):90-97.
    [14]李道西,李自辉,刘增进,等.温室滴灌条件下辣椒耗水特性的研究[J].节水灌溉, 2016(10):44-46.
    [15]刘玉春,李久生.毛管埋深和土壤层状质地对地下滴灌番茄根区水氮动态和根系分布的影响[J].水利学报, 2009, 40(7):782-790.
    [16]张宪法,于贤昌,张凌云.水分对蔬菜生长动态和生理活动的影响[J].中国蔬菜, 2000(4):48-50.
    [17]杨再强,邱译萱,刘朝霞,等.土壤水分胁迫对设施番茄根系及地上部生长的影响[J].生态学报, 2016, 36(3):748-757.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700