聚丙烯酰胺凝胶法制备氧化锆纳米粉体的热分解过程和相转变行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal Decomposition Process and Phase Transformation Behavior of Zirconia Nanopowders Prepared by Polyacrylamide Gel Route
  • 作者:刘婷 ; 陈伟东 ; 鞠红民 ; 闫淑芳 ; 张宇欣 ; 马文
  • 英文作者:LIU Ting;CHEN Weidong;JU Hongmin;YAN Shufang;ZHANG Yuxin;MA Wen;School of Materials Science and Engineering,Inner Mongolia University of Technology;Inner Mongolia Key Laboratory of Thin Film and Coatings;
  • 关键词:聚丙烯酰胺凝胶法 ; 氧化锆 ; 纳米粉体
  • 英文关键词:polyacrylamide gel route;;zirconia;;nanopowders
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:内蒙古工业大学材料科学与工程学院;内蒙古自治区薄膜与涂层重点实验室;
  • 出版日期:2019-06-26
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(51164023;51364026);; 内蒙古自然科学基金(2016MS0505);; 内蒙古自治区科技重大专项(2018-810)~~
  • 语种:中文;
  • 页:CLDB201914008
  • 页数:4
  • CN:14
  • ISSN:50-1078/TB
  • 分类号:37-40
摘要
为了制得相纯度高、颗粒细小、粒径分布较窄的ZrO_2纳米粉体,采用聚丙烯酰胺凝胶法,以氧氯化锆为前驱体制备ZrO_2纳米粉体。采用热重-差热同步分析仪(TG-DSC)、傅里叶变换红外光谱仪(FT-IR)、X射线衍射仪(XRD)和扫描电子显微镜(SEM)分别对凝胶的热分解过程及ZrO_2粉体的物相组成、形貌和颗粒尺寸进行表征,分析了聚丙烯酰胺凝胶法制备ZrO_2纳米粉体的热分解过程和相转变行为。研究结果表明,氧化锆凝胶的热分解是一个分步进行的过程,其完全热分解的温度为577℃。随着煅烧温度的升高,氧化锆凝胶结晶度增大,逐渐由无定型态转变为四方相(tZrO_2)氧化锆,并在900℃时完全转变为单斜相(m-ZrO_2)氧化锆。ZrO_2纳米粉体的颗粒尺寸随着煅烧温度的升高而增大,煅烧温度为700~1 000℃时可制得粒径在50~200 nm范围内近似球形的ZrO_2颗粒。本工作系统地研究了氧化锆凝胶的热分解过程及煅烧温度对ZrO_2纳米粉体相纯度、粒径分布和颗粒形貌的影响,为聚丙烯酰胺凝胶法制备ZrO_2纳米粉体的研究提供理论指导。
        For the sake of obtaining zirconia nanopowders with high phase purity,fine particles and narrow particle size distribution,polyacrylamide gel route was employed to prepare zirconia nanopowders,taking zirconium oxychloride as precursor. Moreover,the thermal decomposition process of zirconia xerogel,phase compositions,morphologies and particle sizes of zirconia nanopowders were characterized by thermogravimetric analysis( TG),differential scanning calorimetry( DSC),Fourier transform infrared spectroscopy( FTIR),X-ray diffraction( XRD) and scanning electron microscope( SEM). The thermal decomposition of zirconia gel and phase transformation behavior of zirconia nanopowders via polyacrylamide technique were analyzed in detail. The results demonstrated that the thermal decomposition of zirconia gel went step by step,and its complete thermo-decomposing temperature was 577 ℃. With the increase of calcination temperature,zirconia gel showed an increase in crystallinity,which transformed from amorphous to tetragonal,and completely converted to monoclinic zirconia at 900 ℃. The particle sizes of zirconia nanopowders increased with the rising calcination temperature. Nearly spherical zirconia nanopowders with the particle size of 50—200 nm can be achieved under the calcination temperature range of 700—1 000 ℃. In the present work,the thermal decomposition of zirconia xerogel and the effect of calcination temperature on zirconia nanopowders were systematically studied,which theoretical guidance for the preparation of zirconia nanopowders by polyacrylamide gel route.
引文
1 Raileanu M,Todan L,Crisan D,et al. Journal of Alloys and Compounds,2012,517,157.
    2 Han A,Wu Z,Zou H. Ceramics International,2017,43(18),16043.
    3 Liu P,Li Z,Xiao P,et al. Ceramics International,2018,44(2),1394.
    4 Li F,Li Y,Song Z,et al. Rare Metal Materials and Engineering,2017,46(4),899.
    5 Gurnyk T M,Trypolskyi A I,Ivashchenko T S,et al. Journal of NonCrystalline Solids,2010,356(18-19),941.
    6 Sanchez-Dominguez M,Liotta L F,Di Carlo G,et al. Catalysis Today,2010,158(1-2),35.
    7 Wang X,Wang R,Peng C,et al. Journal of Sol-Gel Science and Technology,2011,57(2),115.
    8 Sun G,Sun G,Zhong M,et al. Russian Journal of Physical Chemistry A,2016,90(3),691.
    9 Wang S F,Lv H B,Zhou X B,et al. Nanoscience and Nanotechnology Letters,2014,6(9),758.
    10 Wang S F,Zhang C,Sun G,et al. Journal of Sol-Gel Science and Technology,2015,73(2),371.
    11 Wang S F,Xiang X,Ding Q P,et al. Ceramics International,2013,39(3),2943.
    12 Ejtemaei M,Tavakoli A,Charchi N,et al. Advanced Powder Technology,2014,25(3),840.
    13 Costa G C C,Muccillo R. Solid State Ionics,2008,179(21-26),1219.
    14 Roy S. Journal of Sol-Gel Science and Technology,2007,44(3),227.
    15 Shadiya M A,Nandakumar N,Joseph R,et al. Advanced Powder Technology,2017,28(12),3148.
    16 Toraya H,Yoshimura M,Somiya S. Journal of the American Ceramic Society,1984,67(6),C-119.
    17 Wang S F,Sun G Z,Fang L M,et al. Scientific Reports,2015,5,12849.
    18 Xian T,Yang H,Dai J F,et al. Chinese Journal of Catalysis,2011,32(4),618(in Chinese).县涛,杨华,戴剑锋,等.催化学报,2011,32(4),618.
    19 Amirshaghaghi A,Kokabi M,Keschtkar H A. Synthesis and Reactivity in Inorganic,Metal-Organic,and Nano-Metal Chemistry,2010,40(9),576.
    20 Xu L L,Cui S,Wu L A,et al. Rare Metal Materials and Engineering,2010,39(suppl 2),501(in Chinese).徐黎岭,崔硕,吴立昂,等.稀有金属材料与工程,2010,39(suppl2),501.
    21 Yang H,Xian T,Wei Z Q,et al. Journal of Sol-gel Science and Technology,2011,58(1),238.
    22 Rakhshani M,Kamrannejad M M,Babaluo A A,et al. Iranian Polymer Journal,2012,21(12),821.
    23 Lin G J,Yang H,Xian T,et al. Advanced Powder Technology,2012,23(1),35.
    24 Khajavi P,Babaluo A A,Tavakoli A,et al. Industrial&Engineering Chemistry Research,2014,53(1),164.
    25 Hartmann P,Brezesinski T,Sann J,et al. ACS Nano,2013,7(4),2999.
    26 Feng H K,Cai Z Y,Tian W,et al. Nonferrous Metals Science and Engineering,2017,8(1),80(in Chinese).冯汉坤,蔡宗英,田薇,等.有色金属科学与工程,2017,8(1),80.
    27 Duan X C,Zhu X B. Nanoscience&Technology,2005(5),39(in Chinese).段学臣,朱协彬.纳米科技,2005(5),39.
    28 Gao J W,Ding X G,Huang S Y,et al. Rare Metal Materials and Engineering,2004,33(suppl 3),52(in Chinese).高基伟,丁新更,黄顺余,等.稀有金属材料与工程,2004,33(suppl 3),52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700