粤南长蛇山分异Ⅰ型花岗岩的年代学、地球化学特征及其构造意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Petrogenesis and Its Geological Implications of the Changsheshan Fractionated Ⅰ-type Granites in the Coastal Area,Southern Guangdong
  • 作者:孟德磊 ; 贾小辉 ; 谢国刚 ; 吴俊 ; 卜建军 ; 曾海良
  • 英文作者:Meng Delei;Jia Xiaohui;Xie Guogang;Wu Jun;Bu Jianjun;Zeng Hailiang;No.912 Geological Surveying Party,Jiangxi Bureau of Geology and Mineral Exploration and Development;Wuhan Center of Geological Survey,China Geological Survey;Research Center for Petrogenesis and Mineralization of Granitoid Rocks,China Geological Survey;
  • 关键词:分异I型花岗岩 ; 锆石U-Pb定年 ; Sr-Nd-Hf同位素 ; 岩石成因 ; 弧后伸展作用
  • 英文关键词:fractionated Ⅰ-type granite;;zircon U-Pb dating;;Sr-Nd-Hf isotopes;;petrogenesis;;backarc extension
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:江西省地质矿产勘查开发局九一二大队;中国地质调查局武汉地质调查中心;中国地质调查局花岗岩成岩成矿研究中心;
  • 出版日期:2019-02-28 15:54
  • 出版单位:地质科技情报
  • 年:2019
  • 期:v.38;No.187
  • 基金:中国地质调查局特殊地区地质填图工程项目“珠三角阳江-珠海地区海岸带1∶5万填图试点”(DD20160064-01);; 国家自然科学基金项目(41302046)
  • 语种:中文;
  • 页:DZKQ201904020
  • 页数:12
  • CN:04
  • ISSN:42-1240/P
  • 分类号:199-210
摘要
在年代学、岩石学、地球化学和Sr-Nd-Hf同位素组成等研究的基础上,探讨了广东南部长蛇山花岗岩的岩石成因及其对区域晚中生代构造背景的指示意义。LA-ICP-MS锆石U-Pb测年结果显示,长蛇山花岗岩形成于中侏罗世晚期(163 Ma)。花岗岩具有富硅、富碱更富钾,贫磷,准铝-弱过铝质(A/CNK=0.98~1.11),富集大离子亲石元素(如Rb、Th、U、Pb),亏损高场强元素(如Nb、Zr、Ti)及Ba、Sr等特征。P_2O_5与SiO_2表现为负相关关系,Y与Rb表现正相关关系,总体表现出高钾钙碱性分异Ⅰ型花岗岩特征,与同期次"南岭系列"花岗岩相似。长蛇山花岗岩具有相对低的(~(87)Sr/~(86)Sr)_i值(0.705 54~0.709 40)和高的ε_(Nd)(t)值(-4.6~-0.4),相应的Nd同位素两阶段模式年龄为0.99~1.33 Ga,锆石原位Hf同位素组成变化大(ε_(Hf)(t)=-7.9~+4.5,t_(DM2)=0.99~1.81 Ga)。元素及同位素结果表明,长蛇山花岗岩可能源自中元古代古老地壳物质的部分熔融,形成过程中遭受了显著的幔源物质混染,并经历了长石、磷灰石和富钛矿物相等的分异结晶。长蛇山分异Ⅰ型花岗岩可能与"南岭系列"花岗岩具有相同的构造背景,形成于古太平洋板块俯冲作用下的弧后伸展环境。
        LA-ICP-MS U-Pb zircon dating for the Changsheshan granite is(163.4±3.0) Ma and(163.2±0.6) Ma respectively, indicating that the granite was generated in the late Middle Jurassic. The granites are enriched in silicon, alkali and potassium and depleted in phosphorus, and exhibit metaluminous to weakly peraluminous, with A/CNK ratios of 0.98-1.11. They are also enriched in large ion lithophile elements, such as Rb, Th, U and Pb, and depleted in high field strength elements, such as Nb, Zr, Ti, Ba and Sr. They have relatively low 10~4×Ga/Al ratios and(Zr+Nb+Ce+Y) contents. In addition, P_2O_5 contents decrease with increasing SiO_2 contents, and Y contents decrease with increasing Rb contents. All these characteristics suggest that the Changsheshan granites are high-K calc-alkaline and highly fractionated Ⅰ-type granites, similar to the "Nanling-series" granites. The Changsheshan granites have relatively low initial(~(87)Sr/~(86)Sr) ratios(0.705 54-0.709 40) and high εNd(t) values(-4.6 to-0.4), together with highly variable ε_(Hf)(t) values(-7.9 to +4.5) and t_(DM2) model age(0.99-1.81 Ga) for the zircons. Combining with geochemical and isotopic compositions, we suggest that the Changsheshan granitic magmas were likely generated by partial melting of the Mesoproterozoic metamorphic basement, involved by small mantle-derived magmas, and that the subsequent extensive fractional crystallization of minerals(feldspar, apatite and Ti-bearing phase) produced the granites. The Changsheshan granites emplaced in the backarc extensional environment are related to subduction of the Paleo-Pacific plate, with the same tectonic settings as those of the "Nanling-series" granites.
引文
[1] Zhou X M,Li W X.Origin of Late Mesozoic igneous rocks in Southeastern China:Implications for lithosphere subduction and under plating of mafic magmas[J].Tectonophysics,2000,326(3):269-287.
    [2] Li X H,Li Z X,Li W X,et al.U-Pb zircon,geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong,SE China:A major igneous event in response to foundering of a subducted flat-slab?[J].Lithos,2007,96(1/2):186-204.
    [3] Ling M X,Wang F Y,Ding X,et al.Cretaceous ridge subduction along the Lower Yangtze River belt,Eastern China[J].Economic Geology,2009,104(2):303-321.
    [4] 孙卫东,凌明星,杨晓勇,等.洋脊俯冲与斑岩铜金矿成矿[J].中国科学:地球科学,2010,40(2):127-137.
    [5] Jiang Y H,Jiang S Y,Dai B Z,et al.Middle to Late Jurassic felsic and mafic magmatism in southern Hunan Province,southeast China:Implications for a continental arc to rifting[J].Lithos,2009,107(3/4):185-204.
    [6] 刘琼颖,何丽娟,黄方.华南中生代地球动力学机制研究进展[J].地球物理学进展,2013,28(2):633-647.
    [7] 毛建仁,厉子龙,叶海敏.华南中生代构造-岩浆活动研究:现状与前景[J].中国科学:地球科学,2014,44(12):2593-2617.
    [8] 李献华,李武显,李正祥.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报,2007,52(9):981-991.
    [9] 陈小明,王汝成,刘昌实,等.广东从化佛冈(主体)黑云母花岗岩定年和成因[J].高校地质学报,2002,8(3):293-307.
    [10] 林小明,李宏卫,黄建桦,等.广东连平大顶铁矿区石背岩体 LA-ICP-MS锆石U-Pb年龄及地质意义[J].中山大学学报:自然科学版,2016,55(1):131-136.
    [11] 包志伟,赵振华.佛冈铝质A型花岗岩的地球化学及其形成环境初探[J].地球与环境,2003,31(1):52-61.
    [12] 庄文明,陈绍前,黄友义.佛冈复式岩体地质地球化学特征及其成岩源岩[J].广东地质,2000,15(3):1-12.
    [13] 陈璟元,杨进辉.佛冈高分异I型花岗岩的成因:来自Nb-Ta-Zr-Hf等元素的制约[J].岩石学报,2015,31(3):846-854.
    [14] 袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520.
    [15] Liu Y,Hu Z,Gao S,et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,2008,257(1):34-43.
    [16] Ludwig K R.Users manual for Isopot/Ex(Rev.2.49):A geochronological toolkit for Microsoft excel[M].[S.l.]:Berkeley Geochronology Centre Special Publication,2001:1-50.
    [17] Qu X,Hou Z,Li Y.Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt,southern Tibetan Plateau[J].Lithos,2004,74(3):131-148.
    [18] Chu N C.Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:An evaluation of isobaric interference corrections[J].Journal of Analytical Atomic Spectrometry,2002,17(12):1567-1574.
    [19] Wu F Y,Yang Y H,Xie L W,et al.Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J].Chemical Geology,2006,234(1):105-126.
    [20] 吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007,23(2):185-220.
    [21] Middlemost E A K.Naming materials in the magma/igneous rock system[J].Annual Review of Earth & Planetary Sciences,1994,37(3/4):215-224.
    [22] Maniar P D,Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin,1989,101(5):635-643.
    [23] Peccerillo A,Taylor S R.Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey[J].Contributions to Mineralogy & Petrology,1976,58(1):63-81.
    [24] Sun S S,Mcdonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society London Special Publications,1989,42(1):313-345.
    [25] 黄会清,李献华,李武显,等.南岭大东山花岗岩的形成时代与成因:SHRIMP锆石U-Pb年龄、元素和Sr-Nd-Hf同位素地球化学[J].高校地质学报,2008,14(3):317-333.
    [26] 李献华,李武显,王选策,等.幔源岩浆在南岭燕山早期花岗岩形成中的作用:锆石原位Hf-O同位素制约[J].中国科学:地球科学,2009,39(7):872-887.
    [27] 孙涛,周新民,陈培荣,等.南岭东段中生代强过铝花岗岩成因及其大地构造意义[J].中国科学:地球科学,2003,33(12):1209-1218.
    [28] 吴福元,刘小驰,纪伟强,等.高分异花岗岩的识别与研究[J].中国科学:地球科学,2017,47(7) :745-765.
    [29] Chappell B W.Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J].Lithos,1999,46(3):535-551.
    [30] Whalen J B,Currie K L,Chappell B W.A-type granites:Geochemical characteristics,discrimination and petrogenesis[J].Contributions to Mineralogy & Petrology,1987,95(4):407-419.
    [31] Chappell B W,Stephens W E.Origin of infracrustal (I-type) granite magmas[J].Transactions of the Royal Society of Edinburgh Earth Sciences,1988,79(2/3):71-86.
    [32] Zhang Y,Yang J H,Sun J F,et al.Petrogenesis of Jurassic fractionated I-type granites in Southeast China:Constraints from whole-rock geochemical and zircon U-Pb and Hf-O isotopes[J].Journal of Asian Earth Sciences,2015,111:268-283.
    [33] 刘勇,肖庆辉,耿树方,等.骑田岭花岗岩体的岩浆混合成因:寄主岩及其暗色闪长质微细粒包体的锆石U-Pb年龄和Hf同位素证据[J].地质科技情报,2011,30(2):1081-1091.
    [34] 赵葵东,蒋少涌,朱金初,等.桂东北花山-姑婆山侵入杂岩体和暗色包体的锆石微区Hf同位素组成及其成岩指示意义[J].科学通报,2009,54(23):3716-3725.
    [35] Wu F Y,Jahn B M,Wilde S A,et al.Highly fractionated I-type granites in NE China (I):Geochronology and petrogenesis[J].Lithos,2003,66(3/4):241-273.
    [36] Pitcher W S.Granite type and tectonic environment[C]//Mountain building processes.London:Academic Press,1983:19-40.
    [37] Pearce J A,Harris N B W,Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].J.Petrol.,1984,25(4):956-983.
    [38] Batchelor R A,Bowden P.Petrogenetic interpretation of granitoid rock series using multicationic parameters[J].Chemical Geology,1985,48(1):43-55.
    [39] Pearce J P,马昌前.花岗岩形成的大地构造环境及其痕量元素判别图解[J].地质科技情报,1986,5(1):57-67.
    [40] Barbarin B.A review of the relationships between granitoid types,their origins and their geodynamic environments[J].Lithos,1999,46(3):605-626.
    [41] 吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217-1238.
    [42] 陈志刚,李献华,李武显,等.赣南全南正长岩的SHRIMP锆石U-Pb年龄及其对华南燕山早期构造背景的制约[J].地球化学,2003,32(3):223-229.
    [43] He Z Y,Xu X S,Niu Y.Petrogenesis and tectonic significance of a Mesozoic granite-syenite-gabbro association from inland South China[J].Lithos,2010,119(3):621-641.
    [44] 朱金初,张佩华,谢才富,等.南岭西段花山-姑婆山A型花岗质杂岩带:岩石学、地球化学和岩石成因[J].地质学报,2006,80(4):529-542.
    [45] 陈培荣,孔兴功,王银喜,等.赣南燕山早期双峰式火山-侵入杂岩的Rb-Sr同位素定年及意义[J].高校地质学报,1999,5(4):378-383.
    [46] 章邦桐,陈培荣,孔兴功.赣南临江盆地余田群双峰式火山岩的Rb-Sr年代学研究[J].中国地质,2002,29(4):351-354.
    [47] 徐夕生,鲁为敏,贺振宇.佛冈花岗岩基及乌石闪长岩-角闪辉长岩体的形成年龄和起源[J].中国科学:地球科学,2007,37(1):27-38.
    [48] 云平,莫位任,李孙雄,等.海南岛中部侏罗纪基性小岩体岩石地球化学特征及其构造意义[J].广东地质,2002,17(4):9-16.
    [49] 徐先兵,张岳桥,贾东,等.华南早中生代大地构造过程[J].中国地质,2009,36(3):573-593.
    [50] 徐先兵,张岳桥,贾东,等.锆石La-ICP-MS U-Pb与白云母40Ar/39Ar年代学及其对中国东南部早燕山事件的制约[J].地质科技情报,2010,29(2):87-94.
    [51] Xu C,Shi H,Barnes C G,et al.Tracing a Late Mesozoic magmatic arc along the Southeast Asian margin from the granitoids drilled from the northern South China Sea[J].International Geology Review,2016,58(1):71-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700