表面润湿性对橡胶滑动接触界面摩擦特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Surface Wettability on the Sliding Frictional Property of NBR Rubber
  • 作者:焦云龙 ; 叶家鑫 ; 刘小君 ; 刘焜
  • 英文作者:JIAO Yunlong;YE Jiaxin;LIU Xiaojun;LIU Kun;Institute of Tribology, Hefei University of Technology;
  • 关键词:橡胶摩擦 ; 接触界面 ; 表面润湿性 ; 黏滞效应
  • 英文关键词:rubber friction;;contact interface;;wettability;;viscosity effect
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:合肥工业大学摩擦学研究所;
  • 出版日期:2018-02-28 17:07
  • 出版单位:机械工程学报
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金(51375132,11472096,51505117);; 安徽省自然科学基金(1608085QE98)资助项目
  • 语种:中文;
  • 页:JXXB201901011
  • 页数:6
  • CN:01
  • ISSN:11-2187/TH
  • 分类号:118-123
摘要
针对橡胶滑动接触界面,利用自主研制开发的光学原位观测线性往复式摩擦试验机,通过控制蒸馏水与添加剂的配比,对不同润湿性液体润滑条件下的橡胶滑动摩擦过程进行了试验性探究,在此基础之上建立了固-液接触角与橡胶滑动摩擦因数之间的关联性,以期从微观界面润湿的角度解释湿滑条件下橡胶滑动摩擦因数变化的原因。研究表明:当润滑液进入橡胶滑动接触界面时,橡胶的黏滞效应大幅度降低,导致摩擦因数出现断崖式下跌,稳态摩擦因数减小;随着添加剂配比的降低,固-液接触角逐渐增大,润滑液在固体表面上的铺展与润湿性变差,润滑作用减弱,稳态摩擦因数逐渐增大。另外试验结果分析表明,固-液接触角与稳态滑动摩擦因数具有一定的线性相关性(R~2≈0.92),摩擦因数随着接触角的增大而增大。
        Based on the independently developed optical in situ linear reciprocation tribotester,sliding tests of NBR rubber are performed under different lubrication conditions.The lubricants have different wettability which is controlled by the additive ratio.The higher additive ratio means the lubricants with better spreading and wetting behavior on the solid substrates.A new theoretical model of rubber sliding friction is constructed under wet conditions,and we try to explain the decrease of sliding friction coefficient during the transition process(the contact interface changes from dry to wet)from interface wettability perspective.In addition,the influence of surface wettability on the friction property is studied and the relationship between the contact angle and friction coefficient is constructed.Results show that the viscosity effect of rubber sharply decreases when the lubricant flows into the contact interface in a short time;with the decrease of additive ratio,the contact angle of lubricant on the solid surface gradually decreases and the static friction coefficient increases.It is concluded that the contact angle of lubricant is linear with static friction coefficient(R~2≈0.92), the experimental results have a great coherence with the theoretical model.
引文
[1]张嗣伟.橡胶磨损原理[M].北京:石油工业出版社,1998.ZHANG Siwei.Wear of elastome[M].Beijing:Petoleum Industry Press,1998.
    [2]谭桂斌,范清,谭锋,等.重大装备橡塑密封系统摩擦学进展与发展趋势[J].摩擦学学报,2016,36(5):659-666.TAN Guibin,FAN Qing,TAN Feng,et al.Advances in tribology on elastomer sealing and its future trends for the huge machinery[J].Tribology,2016,36(5):659-666.
    [3]MOORE D F.The elastohydrodynamic transition speed for spheres sliding on lubricated rubber[J].Wear,1975,35(1):159-170.
    [4]ONG G P,FWA T F.Wet-pavement hydroplaning risk and skid resistance:Modeling[J].Journal of Transportation Engineering,2007,134(5):182-190.
    [5]彭旭东,谢友柏,郭孔辉.轮胎摩擦学的研究与发展[J].中国机械工程,1999,10(2):215-219.PENG Xudong,XIE Youbai,GUO Konghui.The investigation and development trends of tire tribology[J].China Mechanical Engineering,1999,10(2):215-219.
    [6]王元霞.轮胎胎面胶抗湿滑性能及其机理的研究[D].北京:北京化工大学,2011.WANG Yuanxia.Study on the mechanism of wet skid resistance for tire tread[D].Beijing:Beijing University of Chemical Technoloy,2011.
    [7]曹平.表面形貌与污染物对沥青路面抗湿滑性能影响的研究[D].武汉:武汉理工大学,2009.CAO Ping.Study on effects of texture and contaminants[D].Wuhan:Wuhan University of Technology,2009.
    [8]周海超,梁晨,杨建,等.提升轮胎抗滑水性能的仿生方法[J].机械工程学报,2015,51(8):125-130.ZHOU Haichao,LIANG Chen,YANG Jian,et al.Bionic method for improving tire anti-hydroplaning performance[J].Journal of Mechanical Engineering,2015,51(8):125-130.
    [9]FWA T F,KUMAR S S,ANUPAM K,et al.Effectiveness of tire-tread patterns in reducing the risk of hydroplaning[J].Transportation Research Record:Journal of the Transportation Research Board,2009,2094(1):91-102.
    [10]PERSSON B N J,TARYAGLINO U,ALBOHR O,et al.Sealing is at the origin of rubber slipping on wet roads[J].Natural Materials,2004,3(12):882-885.
    [11]PERSSON B N J,TARYAGLINO U,ALBOHR O,et al.Rubber friction on wet and dry road surfaces:The sealing effect[J].Physical Review B:Condensed Matter,2005,71(3):035428.
    [12]DO M T,CEREZO V,BEAUTRU Y,et al.Modeling of the connection road surface microtexture/water depth/friction[J].Wear,2013,302(1-2):1426-1435.
    [13]DELEAU F,MAZUYER D,KOENEN A.Sliding friction at elastomer/glass contact:Influence of the wetting conditions and instability analysis[J].Tribology International,2009,42(1):149-159.
    [14]PAN X D.Wet sliding friction of elastomer compounds on a rough surface under varied lubrication conditions[J].Wear,2007,262(5-6):707-717.
    [15]LORENZ B,OH Y R,NAM S K,et al.Rubber friction on road surfaces:Experiment and theory for low sliding speeds[J].The Journal of Chemical Physics,2015,142(19):194701.
    [16]SABEY B,WILLIAMS T,LUPTON G.Factors affection the friction of tires on wet road[S].SAE Technical Paper700376,1970,doi:10.4271/700376.
    [17]王野平.论轮胎与路面间的摩擦[J].汽车技术,1999(2):10-14.WANG Yeping.Discussion of the friction between tire and road[J].Automotive Engineering,1999(2):10-14.
    [18]SAKAI H.Friction and wear of tire tread rubber[J].Tire Science and Technology,1996,24(3):252-275.
    [19]MOORE D F.The friction and lubrication of elastomers[J].Pergamon Press,1975:108-115.
    [20]MAZZOLA L,GALDERISI A,FORTUNATO G,et al.Influence of surface energy and wettability on friction coefficient between tire and road surface in wet condition[J].Advances in Contact Angle,Wettability and Adhesion,2013,1:389-410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700