铸体薄片的分形表征——以柴达木盆地昆北新区为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fractal characterization of casting thin sections :A case study from Kunbei area in Qaidam Basin
  • 作者:陈更新 ; 刘应如 ; 郭宁 ; 王爱萍 ; 常海燕 ; 张婷静
  • 英文作者:Chen Gengxin;Liu Yingru;Guo Ning;Wang Aiping;Chang Haiyan;Zhang Tingjing;PetroChina Research Institute of Petroleum Exploration & Development-Northwest;Key Laboratory of Reservoir Description,CNPC;Research Institute of Exploration and Development,PetroChina Qinghai Oilfield Company;
  • 关键词:孔隙结构 ; 二值化 ; 分形维数 ; 采油指数 ; 青海油田 ; 柴达木盆地
  • 英文关键词:pore structure;;binarization;;fractal dimension;;productivity index;;Qinghai Oilfield;;Qaidam Basin
  • 中文刊名:YANX
  • 英文刊名:Lithologic Reservoirs
  • 机构:中国石油勘探开发研究院西北分院;中国石油天然气集团公司油藏描述重点实验室;中国石油青海油田分公司勘探开发研究院;
  • 出版日期:2016-02-01
  • 出版单位:岩性油气藏
  • 年:2016
  • 期:v.28
  • 基金:国家重大科技专项“复杂气藏地震综合解释与三维建模技术研究及应用”(编号:2011ZX05007-006);; 中国石油重大科技专项“柴达木盆地新区复合油藏高效开发技术研究”课题(编号:2011E-0308)联合资助
  • 语种:中文;
  • 页:YANX201601011
  • 页数:6
  • CN:01
  • ISSN:62-1195/TE
  • 分类号:76-80+91
摘要
传统的铸体薄片孔隙结构分析方法仅局限于对铸体薄片照片进行定性描述,而应用图像处理技术,可凸显和挖掘铸体薄片孔隙结构的有效信息,并可计算出其分形维数,建立分形维数与岩心孔隙度、沉积微相及采油指数的定量关系。分形维数是铸体薄片孔隙性和分选性的综合反映,孔隙度越大,分选性和连通性越好,分形维数则越大。柴达木盆地昆北新区切6油藏储层中,分流河道和河口坝微相的分形维数界限为1.83,利用它可以判别沉积微相类型。孔隙结构分形维数与相应层段的采油指数具有正相关性,可用来定量预测采油指数。利用分形几何学方法可实现对铸体薄片孔隙结构的半定量刻画。
        The conventional analysis of pore structure of casting thin sections is mainly limited to qualitative description of the picture. Effective information of pore structure can be obtained by using the image processing technology to calculate the fractal dimensions of pores. The quantitative relations of the fractal dimensions with porosity, sedimentary microfacies and productivity index were established. The fractal dimensions represent porosity and sorting features synthetically. The larger the porosity is, the better the sorting and connectivity are, and the larger the fractal dimension will be. In the Qie 6 reservoir in Kunbei area of Qaidam Basin, the fractal dimension limit between distributary channel and river mouth bar is 1.83, which can be used to distinguish microfacies. The fractal dimension has a quantificational positive-correlation with productivity index, so it can be used to predict the productivity index. By the fractal mathematics method, the semi-quantitative characterization of the pore structure of casting thin sections can be realized.
引文
[1]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986:2-17.Luo Zhitan,Wang Yuncheng.Pores structure of oil-gas reservoir[M].Beijing:Science Press,1986:2-17.
    [2]宫英振,牛海霞,董正茂,等.分形多孔介质孔道网络模型的构建[J].农业机械学报,2009,40(11):109-114.Gong Yingzhen,Niu Haixia,Dong Zhengmao,et al.Construction of pore network model of fractal porous media[J].Transactions of the Chinese Society for Agricultural Machinery,2009,40(11):109-114.
    [3]Mandelbrot B B.The fractal geometry of nature[M].San Francisco:Freeman,1982:1-50.
    [4]Mandelbrot B B,Wheeler J A.The fractal geometry of nature[J].American Journal of Physics,1983,51(3):286-287.
    [5]张济忠.分形[M].第2版.北京:清华大学出版社,2011:1-66.Zhang Jizhong.Fractal[M].2nd ed.Beijing:Press of Tsinghua University,2011:1-66.
    [6]马新仿,张士诚,郎兆新.分形理论在岩石孔隙结构研究中的应用[J].岩石力学与工程学报,2003,22(增1):2164-2167.Ma Xinfang,Zhang Shicheng,Lang Zhaoxin.Application of fractal theory to pore structure research[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(Suppl.1):2164-2167.
    [7]文慧俭,闫林,姜福聪,等.低孔低渗储层孔隙结构分形特征[J].大庆石油学院学报,2007,31(1):15-18.Wen Huijian,Yan Lin,Jiang Fucong,et al.The fractal characteristics of the pore texture in low porosity and low permeability reservoir[J].Journal of Daqing Petroleum Institute,2007,31(1):15-18.
    [8]徐守余,王淑萍.砂岩储层微观结构分形特征研究——以胜坨油田古近系沙河街组储层为例[J].天然气地球科学,2013,24(5):886-893.Xu Shouyu,Wang Shuping.Fractal feature about the micro-structure in sandstone reservoir:Taking the Paleogene Shahejie Formation in Shengtuo oilfield as an example[J].Natural Gas Geoscience,2013,24(5):886-893.
    [9]杨庆红,谭吕,蔡建超,等.储层微观非均质性定量表征的分形模型[J].地球物理学进展,2012,27(2):603-609.Yang Qinghong,Tan Lü,Cai Jianchao,et al.fractal models for quantitative characterization of the reservoir microscopic heterogeneity[J].Progress in Geophysics,2012,27(2):603-609.
    [10]谢晓永,郭新江,蒋祖军,等.基于孔隙结构分形特征的水锁损害预测新方法[J].天然气工业,2012,32(11):68-71.Xie Xiaoyong,Guo Xinjiang,Jiang Zujun,et al.A new method for the prediction of water locking damage based on the fractal feature of pore structures[J].Natural Gas Industry,2012,32(11):68-71.
    [11]彭瑞东,杨彦从,鞠杨,等.基于灰度CT图像的岩石孔隙分形维数计算[J].科学通报,2011,56(26):2256-2266.Peng Ruidong,Yang Yancong,Ju Yang,et al.Computation of fractal dimension of rock pores based on gray CT images[J].Chinese Science Bulletin,2011,56(26):2256-2266.
    [12]冯志刚,周宏伟.图像的分形维数计算方法及其应用[J].江苏理工大学学报:自然科学版,2001,22(6):92-96.Feng Zhigang,Zhou Hongwei.Compute method of fractal dimension of image and application[J].Journal of Jiangsu University of Science and Technology:Natural Science,2001,22(6):92-96.
    [13]杨书申,邵龙义.MATLAB环境下图像分形维数的计算[J].中国矿业大学学报,2006,35(4):478-482.Yang Shushen,Shao Longyi.Estimation of fractal dimensions of images based on MATLAB[J].Journal of China University of Mining&Technology,2006,35(4):478-482.
    [14]李庆钊,赵长遂,武卫芳,等.高浓度CO2气氛下煤粉的燃烧及其孔隙特性[J].中国电机工程学报,2008,28(32):35-41.Li Qingzhao,Zhao Changsui,Wu Weifang,et al.Pulverized coal combustion under high C02environment and its porosity characteristics[J].Proceedings of the CSEE,2008,28(32):35-41.
    [15]Fisher Y.Fractal image compression:Theory and application[M].New York:Springer-Verlag,1994:30-90.
    [16]张铮,倪红霞,苑春苗,等.精通Matlab数字图像处理与识别[M].北京:人民邮电出版社,2013:220-232.Zhang Zheng,Ni Hongxia,Wan Chunmiao,et al.Proficient in digital image processing and recognition with Matlab[M].Beijing:Post&Telecom Press,2013:220-232.
    [17]朱华,姬翠翠.分形理论及其应用[M].北京:科学出版社,2011:20-60.Zhu Hua,Ji Cuicui.Fractal theory and its application[M].Beijing:Science Press,2011:20-60.
    [18]Arkhangelskii A V,Pontryagin L S.General topologyⅠ[M].Berlin:Springer-Verlag,1990.
    [19]杨松,邵龙潭,郭晓霞,等.基于骨架和分形的混凝土裂缝图像识别算法[J].仪器仪表学报,2012,33(8):1850-1855.Yang Song,Shao Longtan,Guo Xiaoxia,et al.Skeleton and fractal law based image recognition algorithm for concrete crack[J].Chinese Journal of Scientific Instrument,2012,33(8):1850-1855.
    [20]李乐,牟中海,汪立群,等.柴达木盆地昆北油田切6区E1+2碎屑岩储层特征及其控制因素[J].岩性油气藏,2011,23(4):75-80.Li Le,Mu Zhonghai,Wang Liqun,et al.Characteristics and controlling factors of E1+2clastic reservoir in Qie 6 block of Kunbei oilfield in Qaidam Basin[J].Lithologic Reservoirs,2011,23(4):75-80.
    [21]莫冯阳,牟中海,常琳,等.昆北油田切16井区路乐河组下段沉积相研究[J].岩性油气藏,2013,25(6):14-19.Mo Fengyang,Mu Zhonghai,Chang Lin,et al.Sedimentary facies of the lower Lulehe Formation in Qie 16 well block of Kunbei oilfield[J].Lithologic Reservoirs,2013,25(6):14-19.
    [22]李文龙,牟中海,屈信忠,等.昆北油田切6井区储层成岩作用及其对储层物性的影响[J].岩性油气藏,2011,23(6):14-19.Li Wenlong,Mu Zhonghai,Qu Xinzhong,et al.Diagenesis and its influence on reservoir properties in Qie 6 well area of Kunbei oilfield[J].Lithologic Reservoirs,2011,23(6):14-19.
    [23]孙康,李国艳,王波,等.切12号构造下干柴沟组下段储层特征及影响因素分析[J].岩性油气藏,2010,22(增刊1):49-53.Sun Kang,Li Guoyang,Wang Bo,et al.Analysis on reservoir characteristics of lower part of lower Ganchaigou formation and its influencing factors in Qie12 structure[J].Lithologic Reservoirs,2010,22.(Suppl.1):49-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700