种植密度与施氮量对烟田小气候及烟株光合特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of planting density and nitrogen application on microclimate and photosynthetic characteristics of tobacco plants in tobacco field
  • 作者:穰中文 ; 李思纯 ; 刘佳 ; 黎娟 ; 李强
  • 英文作者:RANG Zhongwen;LI Sichun;LIU Jia;LI Juan;LI Qiang;College of Agronomy, Hunan Agricultural University;
  • 关键词:烤烟 ; 种植密度 ; 施氮量 ; 烟田小气候 ; 光合特性
  • 英文关键词:flue-cured tobacco;;planting density;;nitrogen application rate;;microclimate of tobacco field;;photosynthetic characteristics
  • 中文刊名:HNND
  • 英文刊名:Journal of Hunan Agricultural University(Natural Sciences)
  • 机构:湖南农业大学农学院;
  • 出版日期:2019-06-25
  • 出版单位:湖南农业大学学报(自然科学版)
  • 年:2019
  • 期:v.45;No.252
  • 基金:湖南中烟工业有限责任公司科技项目(YC13005)
  • 语种:中文;
  • 页:HNND201903007
  • 页数:6
  • CN:03
  • ISSN:43-1257/S
  • 分类号:36-41
摘要
探讨了烤烟种植密度(19 500、18 000、16 500株/hm~2)与施氮水平(105.0、127.5 kg/hm~2)对烟田小气候以及烟株光合作用的影响。结果表明:烟株叶面温度较田间垄间温度平均高2.50℃,二者呈正相关关系(r=0.800),受种植密度影响较大;施氮量为127.5kg/hm~2时,种植密度每增加1500株/hm~2,烟株下、中、上部垄间温度分别降低1.35、1.65和1.95℃,叶面温度分别下降1.80、1.55和1.40℃;种植密度与施氮量对垄间相对湿度的影响存在负的显著交互效应,效应值为–0.538;种植密度影响烟株中下部有效光合辐射,高种植密度下增施氮肥,导致中下部叶片有效光合辐射分别减少39.46%和56.98%;种植密度与施氮量显著影响烟株光合速率、胞间CO_2浓度,并存在交互效应,但不影响叶片气孔导度与烟株蒸腾速率,减小种植密度,增施氮肥,可提高烟株光合速率,种植密度16 500株/hm~2、施氮127.5 kg/hm~2处理各部位烟叶平均光合速率较种植密度19 500株/hm~2、施氮105.0kg/hm~2高23.09%;施氮量是影响胞间CO_2浓度的主要因素,且存在部位差异。回归分析表明,叶片气孔导度、胞间CO_2浓度和叶片蒸腾速率显著影响烟叶光合速率,有效光合辐射与垄间温度、叶面温度、田间相对湿度呈显著正相关,叶面温度与烟叶的蒸腾速率呈显著正相关,垄间相对湿度与叶片胞间CO_2浓度呈显著负相关。种植密度与氮肥施用,通过影响烟田垄间温度、叶面温度、田间相对湿度等烟田小气候,改变了烟株蒸腾速率,进而影响叶片胞间CO_2浓度,最终影响其光合速率。
        The effects of planting density(19 500, 18 000 and 16 500 plants/hm~2) and nitrogen application level(105.0 and 127.5 kg/hm~2) on microclimate of tobacco field and photosynthesis were studied. Results showed that leaf surface temperature was 2.50 ℃ higher than field ridge temperature on average, which were greatly influenced by planting density and there was a positive correlation between them(r= 0.800). When nitrogen application amount was 127.5 kg/hm~2, and with each increase of planting density by 1 500 plants/hm~2, temperature at lower, middle and upper ridges decreased by 1.35, 1.65 and 1.95 ℃, respectively; and leaf surface temperature decreased by 1.80, 1.55 and 1.40 ℃,respectively. Planting density showed no significant effect on relative humidities between ridges, but shown negative significant interaction effect with the effect value of-0.538. Density affected the photosynthetic radiation in the middle and lower parts of tobacco plants, under high planting density, the increased application of nitrogen reduced the effective photosynthetic radiation in the middle and lower leaves by 39.46% and 56.98%, respectively. Density and nitrogen application significantly affected photosynthetic rate and intercellular CO_2 concentration of tobacco plants with interaction effect, but did not affect leaf stomatal conductance and tobacco transpiration rate. Reduced density and increased nitrogen application raised photosynthetic rate of tobacco plants, the average photosynthetic rate of tobacco leaves planted at 16 500 plants/hm~2 and with nitrogen 127.5 kg/hm~2 was 23.09% higher than that in treatment with 19 500 plants/hm~2 and nitrogen level of 105.0 kg/hm~2. Nitrogen application rate was the main factor affecting intercellular CO_2 concentration with positional differences. Regression analysis showed that stomatal conductance, intercellular CO_2 concentration and transpiration rate significantly affected photosynthetic rate. Effective photosynthetic radiation was positively correlated with air temperature, leaf temperature and field relative humidity. Leaf temperature was positively correlated with leaf transpiration rate and field relative humidity was negatively correlated with leaf intercellular CO_2 concentration. The results showed that planting density and nitrogen application changed the transpiration rate of tobacco plants by influencing the microclimate such as air temperature, leaf temperature and field relative humidity in tobacco fields, and then affected leaf intercellular CO_2 concentration and photosynthetic rate ultimately.
引文
[1]张生杰,黄元炯,任庆成,等.氮素对不同品种烤烟叶片衰老、光合特性及产量和品质的影响[J].应用生态学报,2010,21(3):668-674.
    [2]史宏志,韩锦峰.烤烟碳氮代谢几个问题的探讨[J].烟草科技,1998,31(2):34-36.
    [3]韩锦峰.烟草栽培生理[M].北京:中国农业出版社,2003:116.
    [4]刘朝科,王军,谢玉华,等.种植密度与施氮量对烤烟光合特性及代谢酶活性的影响[J].华南农业大学学报,2013,34(4):458-464.
    [5]王凯,于洁,葛生珍,等.种植密度和留叶数对彭水山地烟叶光合特性的影响[J].西南农业学报,2013,26(5):1843-1846.
    [6]毛家伟,张翔,王宏,等.种植密度和氮用量对烟叶光合特性和产量质量的影响[J].干旱地区农业研究,2012,35(5):66-70.
    [7]孔德钧,卢贤仁,潘文杰,等.植物源病毒制剂对烟草花叶病毒病的防效及其光合特性的影响[J].贵州农业科学,2013,41(12):82-86.
    [8]钟楚,张明达,胡雪琼,等.温度变化对烟草光合作用光响应特征的影响[J].生态学杂志,2012,31(2):337-341.
    [9]刘贞琦,伍贤进,刘振业.土壤水分对烟草光合生理特性影响的研究[J].中国烟草学报,1995,1(1):44-49.
    [10]王少先.施氯对烟草植株光合特性的影响[J].中国农学通报,2006,22(9):229-232.
    [11]李文璧,朱凯,段凤云,等.施氮量和种植密度对红花大金元烟田小气候和产值的影响[J].中国烟草科学,2008,29(2):27-32.
    [12]杨龙祥,陈荣平.烤烟烟田微气候变化研究[J].中国烟草科学,2008,29(4):30-34.
    [13]肖金香.烤烟烟田小气候特征的研究[J].江西农业大学学报,1987,9(1):46-52.
    [14]朱列书,赵松义,李伟.烟草不同基因型的光合特性研究[J].中国烟草科学,2006(1):5-7.
    [15]邓小华,肖志君,齐永杰,等.种植密度和施氮量及其互作对湘南稻茬烤烟经济性状的效应[J].湖南农业大学学报(自然科学版),2016,42(3):274-279.
    [16]杨利云,段胜智,李军营,等.不同温度对烟草生长发育及光合作用的影响[J].西北植物学报,2017,37(2):330-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700