冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Anomalous Thermal Expansion Behavior of Cold-Rolled Ti-35Nb-2Zr-0.3O Alloy
  • 作者:蓝春波 ; 梁家能 ; 劳远侠 ; 谭登峰 ; 黄春艳 ; 莫羡忠 ; 庞锦英
  • 英文作者:LAN Chunbo;LIANG Jianeng;LAO Yuanxia;TAN Dengfeng;HUANG Chunyan;MO Xianzhong;PANG Jinying;Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials,Nanning Normal University;School of Materials Science and Engineering, Southeast University;
  • 关键词:Ti-35Nb-2Zr-0.3O合金 ; 冷轧 ; 显微组织 ; 异常热膨胀
  • 英文关键词:Ti-35Nb-2Zr-0.3O alloy;;cold rolling;;microstructure;;anomalous thermal expansion
  • 中文刊名:JSXB
  • 英文刊名:Acta Metallurgica Sinica
  • 机构:南宁师范大学化学与材料学院广西天然高分子化学与物理重点实验室;东南大学材料科学与工程学院;
  • 出版日期:2019-06-11
  • 出版单位:金属学报
  • 年:2019
  • 期:v.55
  • 基金:广西自然科学基金项目Nos.2018GXNSFAA138057和2018JJA110055;; 广西大学广西有色金属及特色材料加工重点实验室开放基金项目Nos.GXYSOF1802和GXYSOF1810~~
  • 语种:中文;
  • 页:JSXB201906003
  • 页数:8
  • CN:06
  • ISSN:21-1139/TG
  • 分类号:21-28
摘要
采用高真空非自耗电弧熔炼炉对Ti-35Nb-2Zr-0.3O (质量分数,%)合金进行熔炼。运用OM、XRD、SEM、TEM和静态热机械分析仪对Ti-35Nb-2Zr-0.3O合金进行表征,研究冷轧形变对合金显微组织及热膨胀行为的影响。结果表明:Ti-35Nb-2Zr-0.3O合金在冷轧过程中产生应力诱发马氏体α"(stress-induced martensiticα",SIMα")相,并形成平行于轧制方向的强<110>织构。等轴晶组织的Ti-35Nb-2Zr-0.3O合金表现出正常的热膨胀行为。形变后,合金的热膨胀行为出现异常现象,轧制方向表现为负膨胀,负膨胀程度随着形变量的增加而增大,截面方向表现为大于固溶态的正膨胀。30%形变合金的轧制方向在室温到250℃具有Invar效应,这一现象归因于SIMα"相变、晶格畸变和<110>织构的形成。冷轧态Ti-35Nb-2Zr-0.3O合金在室温到110℃的异常膨胀归因于SIMα"相到β相的晶格转变,而在高于110℃的异常膨胀行为归因于ω相和α相的析出。
        Thermal expansion behavior is one of the intrinsic properties of most materials, which is very difficult to control their thermal expansion behavior. Metallic material with ultra-low coefficient of thermal expansion named Invar effect was first found in Fe-Ni alloys. Recently, a multifunctional titanium alloy termed Gum metal(the typical composition is Ti-36Nb-2Ta-3Zr-0.3O, mass fraction, %; three electronic parameters: electron per atom ratio e/a≈4.24, bond order Bo≈2.87 and d electron orbital energy level Md≈2.45 e V) has been developed, and the alloy exhibits Invar effect after severe cold working. It is well known that the Invar effect of Fe-Ni alloys is related to the magnetic transition. However, titanium and its alloys are paramagnetic, and thus this mechanism cannot be used to explain Invar effect of Gum metal.In addition, the Invar effect of Gum metal is related to a dislocation-free plastic deformation mechanism.So far, there is still some controversy about this mechanism. In this study, a new β-type Ti-Nb base alloy Ti-35 Nb-2 Zr-0.3 O(mass fraction, %) was developed whose three electronic parameters are different from those of the above mentioned Gum metal. The alloy was melted under high-purity argon atmosphere in an electric arc furnace, and the effects of cold rolling on microstructures and thermal expansion behaviors were characterized by OM, XRD, SEM, TEM and thermal mechanical analyzer(TMA). Results showed that the stress-induced martensitic α "(SIM α") phase transformation occurs after cold rolling, and the dominant <110> texture forms after severe plastic deformation. The equiaxed grains of Ti-35 Nb-2 Zr-0.3 O alloy exhibit ordinary positive thermal expansion behavior and the thermal expansion rate increases with the increase of temperature. After cold deformation, negative thermal expansion occurs along rolling direction, and normal thermal expansion higher than solution treated sample occurs along transverse direction. The abnormal thermal expansion extent of the alloy increases with the increase of deformation reduction. The 30% cold deformed alloy along rolling direction possesses Invar effect between room temperature to 250 ℃, which is possibly related to SIM α " phase transformation, lattice distortion and <110>texture formation. The anomalous thermal expansion of the cold deformed samples in a temperature range from 25 ℃ to 110 ℃ is attributed to the lattice transition of SIM α" to β phase, while above 110 ℃ is attributed to the precipitation of ω and α phases.
引文
[1]Kainuma R,Wang J J,Omori T,et al.Invar-type effect induced by cold-rolling deformation in shape memory alloys[J].Appl.Phys.Lett.,2002,80:4348
    [2]Nakai M,Niinomi M,Akahori T,et al.Anomalous thermal expansion of cold-rolled Ti-Nb-Ta-Zr alloy[J].Mater.Trans.,2009,50:423
    [3]Guillaume C E.The anomaly of the nickel-steels[J].Proc.Phys.Soc.London,1920,32:374
    [4]Li X F,Chen N N,Li J J,et al.Effect of temperature and strain rate on deformation behavior of Invar 36 alloy[J].Acta.Metall.Sin.,2017,53:968(李细锋,陈楠楠,李佼佼等.温度与应变速率对Invar 36合金变形行为的影响[J].金属学报,2017,53:968)
    [5]Abdel-Hady M,Morinaga M.Controlling the thermal expansion of Ti alloys[J].Scr.Mater.,2009,61:825
    [6]Chen J,Hu L,Deng J X,et al.Negative thermal expansion in functional materials:Controllable thermal expansion by chemical modifications[J].Chem.Soc.Rev.,2015,44:3522
    [7]Liu X N,Lin K,Gao Q L,et al.Structure and phase transformation in the giant magnetostriction laves-phase Sm Fe2[J].Inorg.Chem.,2017,57:689
    [8]Song Y Z,Chen J,Liu X Z,et al.Zero thermal expansion in magnetic and metallic Tb(Co,Fe)2intermetallic compounds[J].J.Am.Chem.Soc.,2018,140:602
    [9]Kuramoto S,Furuta T,Hwang J H,et al.Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy[J].Metall.Mater.Trans.,2006,37A:657
    [10]Furuta T,Kuramoto S,Chen R,et al.Effect of oxygen on phase stability and elastic deformation behavior in Gum metal[J].J.Jpn.Inst.Met.,2006,70:579
    [11]Wang W,Huang R,Zhao Y,et al.Adjustable zero thermal expansion in Ti alloys at cryogenic temperature[J].J.Alloys Compd.,2018,740:47
    [12]Saito T,Furuta T,Hwang J H,et al.Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism[J].Science,2003,300:464
    [13]Xing H,Guo W Y,Sun J.Substructure of recovered Ti-23Nb-0.7Ta-22r-O alloy[J].Trans.Nonferrous Met.Soc.China,2007,17:1456
    [14]Talling R J,Dashwood R J,Jackson M,et al.On the mechanism of superelasticity in Gum metal[J].Acta Mater.,2009,57:1188
    [15]Talling R J,Dashwood R J,Jackson M,et al.Compositional variability in Gum metal[J].Scr.Mater.,2009,60:1000
    [16]Besse M,Castany P,Gloriant T.Mechanisms of deformation in Gum metal TNTZ-O and TNTZ titanium alloys:A comparative study on the oxygen influence[J].Acta Mater.,2011,59:5982
    [17]Yang Y,Li G P,Cheng G M,et al.Multiple deformation mechanisms of Ti-22.4Nb-0.73Ta-2.0Zr-1.34O alloy[J].Appl.Phys.Lett.,2009,94:061901
    [18]Kim H Y,Wei L S,Kobayashi S,et al.Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti-23Nb-2Zr-0.7Ta-1.2O alloy[J].Acta Mater.,2013,61:4874
    [19]Gutkin M Y,Ishizaki T,Kuramoto S,et al.Nanodisturbances in deformed Gum metal[J].Acta Mater.,2006,54:2489
    [20]Wei L S,Kim H Y,Miyazaki S.Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti-Nb-Zr-Ta-O alloys[J].Acta Mater.,2015,100:313
    [21]Lan C B,Li G,Wu Y,et al.Effects of cold deformation on microstructure and mechanical properties of Ti-35Nb-2Zr-0.3O alloy for biomedical applications[J].Trans.Nonferrous Met.Soc.China,2017,27:1537
    [22]Lan C B,Wu Y,Chen F.Effects of cold rolling on microstructure and anomalous thermal expansion behaviors of Ti-35Nb-2Zr-0.3Oalloy[J].Key Eng.Mater.,2017,729:46
    [23]Guo W,Quadir M Z,Ferry M.The mode of deformation in a coldswaged multifunctional Ti-Nb-Ta-Zr-O alloy[J].Metall.Mater.Trans.,2013,44A:2307
    [24]Morris J W Jr,Hanlumyuang Y,Sherburne M,et al.Anomalous transformation-induced deformation in<110>textured Gum metal[J].Acta Mater.,2010,58:3271
    [25]Lan C B,Wu Y,Guo L L,et al.Microstructure,texture evolution and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn biomedical beta titanium alloy[J].J.Mater.Sci.Technol.,2018,34:788
    [26]Lan C B,Wu Y,Guo L L,et al.Effects of cold rolling on microstructure,texture evolution and mechanical properties of Ti-32.5Nb-6.8Zr-2.7Sn-0.3O alloy for biomedical applications[J].Mater.Sci.Eng.,2017,A690:170
    [27]Hwang J,Kuramoto S,Furuta T,et al.Phase-stability dependence of plastic deformation behavior in Ti-Nb-Ta-Zr-O alloys[J].J.Mater.Eng.Perform.,2005,14:747
    [28]Wei Q Q,Wang L Q,Fu Y F,et al.Influence of oxygen content on microstructure and mechanical properties of Ti-Nb-Ta-Zr alloy[J].Mater.Des.,2011,32:2934
    [29]Wang Y,Gao J H,Wu H J,et al.Strain glass transition in a multifunctionalβ-type Ti alloy[J].Sci.Rep.,2015,4:3995
    [30]Kim H Y,Sasaki T,Okutsu K,et al.Texture and shape memory behavior of Ti-22Nb-6Ta alloy[J].Acta Mater.,2006,54:423
    [31]Afonso C R M,Ferrandini P L,Ramirez A J,et al.High resolution transmission electron microscopy study of the hardening mechanism through phase separation in aβ-Ti-35Nb-7Zr-5Ta alloy for implant applications[J].Acta Biomater.,2010,6:1625
    [32]Málek J,Hnilica F,VeselyJ,et al.The influence of chemical composition and thermo-mechanical treatment on Ti-Nb-Ta-Zr alloys[J].Mater.Des.,2012,35:731
    [33]Guo Q H,Zhan Y Z,Mo H L,et al.Aging response of the Ti-Nb system biomaterials withβ-stabilizing elements[J].Mater.Des.,2010,31:4842
    [34]Ferrandini P L,Cardoso F F,Souza S A,et al.Aging response of the Ti-35Nb-7Zr-5Ta and Ti-35Nb-7Ta alloys[J].J.Alloys Compd.,2007,433:207
    [35]Guo W Y,Li J,Sun J.Thermal expansion behavior of Ti-23Nb-0.7Ta-2Zr-O alloy[J].Mater Res.Appl.,2010,4:169(郭文渊,李俊,孙坚.Ti-23Nb-0.7Ta-2Zr-O合金的热膨胀行为[J].材料研究与应用,2010,4:169)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700