臭氧催化氧化处理炼油生化尾水的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on biochemical tail water of refinery by ozone catalytic oxidation
  • 作者:阚小康 ; 颜家保 ; 刘学东 ; 俞丹青 ; 刘思炜
  • 英文作者:KAN Xiao-kang;YAN Jia-bao;LIU Xue-dong;YU Dan-qing;LIU Si-wei;School of Chemistry and Chemical Engineering,Wuhan University of Science and Technology;Sinopec Wuhan Company;
  • 关键词:臭氧催化氧化 ; 炼油废水 ; 陶粒催化剂
  • 英文关键词:catalytic ozonation;;refinery wastewater;;ceramsite catalyst
  • 中文刊名:SXHG
  • 英文刊名:Applied Chemical Industry
  • 机构:武汉科技大学化学与化工学院;中国石油化工股份有限公司武汉分公司;
  • 出版日期:2018-04-10
  • 出版单位:应用化工
  • 年:2018
  • 期:v.47;No.314
  • 基金:湖北省技术创新专项重大项目(2017ACA179)
  • 语种:中文;
  • 页:SXHG201804029
  • 页数:4
  • CN:04
  • ISSN:61-1370/TQ
  • 分类号:128-131
摘要
针对生化后炼油废水CODCr无法达标的问题,使用负载Mn-Fe氧化物活性相的陶粒催化剂。采用臭氧催化氧化工艺处理炼油生化尾水。研究中考察了pH、温度、催化剂投加量和臭氧用量等工艺条件对生化尾水中CODCr处理效果的影响。结果表明,当废水初始pH=7,臭氧用量为6.3 mg/min,催化剂投加量为8 g/L时,催化氧化效果最优。室温(22℃)下反应30 min后,出水CODCr浓度为48 mg/L,满足了炼油企业排放标准。所制备的催化剂使用后活性稳定,多次使用后活性无明显降低。
        In order to solve the problem that the CODC rof biochemical refining wastewater can not reach the standard,ozone catalytic oxidation process was applied for the treatment of refinery biochemical tail water over ceramsite catalyst loaded with Mn-Fe oxide catalysts. The influence of pH,temperature,catalyst dosage and ozone amount on the treat effect of CODcrwere investigated. The results showed that the highest removal of CODC rwas achieved when the flow rate of ozone was 6. 3 mg/min,the dose of catalyst was8 g/L,and the initial pH value was 7. Under these conditions,the concentration of CODC ris 48 mg/L which could satisfy the emission standard of pollutants for petroleum refining industry after 30 min treatment at the ambient temperature( 22 ℃). The experimental result also showed that the self-prepared ceramsite catalyst had good stability. The activity did not decrease much even after ten runs.
引文
[1]陈洪斌,庞小东,李建忠,等.炼油废水的处理和回用进展[J].给水排水,2002(2):52-56.
    [2]孙武,王泉,王能才,等.国产PVDF中空纤维膜在炼油废水深度处理回用中的应用[J].石油炼制与化工,2013,44(3):79-83.
    [3]刘春平.石油化工企业的节水减排[J].化工环保,2006,26(1):74-77.
    [4]韩帮军.臭氧催化氧化除污染特性及其生产应用研究[D].哈尔滨:哈尔滨工业大学,2007.
    [5]肖华,张棋,许育新.水处理均相催化臭氧氧化技术研究现状[J].水处理技术,2009(7):1-4.
    [6]王利平,沈肖龙,倪可,等.非均相催化臭氧氧化深度处理炼油废水[J].环境工程学报,2015,9(5):2297-2302.
    [7]钟理,张浩,陈英,等.臭氧在水中的自分解动力学及反应机理[J].华南理工大学学报:自然科学版,2002,30(2):83-86.
    [8]李想,田一梅,杨琦.温度对臭氧氧化再生水的影响[J].环境工程学报,2016(11):6200-6204.
    [9]邓凤霞,邱珊,岳秀丽,等.非均相催化臭氧氧化深度处理炼油废水[J].浙江大学学报:工学版,2015(3):555-563.
    [10]Amutha R,SillanpM,Lee G,et al.Catalytic ozonation of 2-ethoxy ethyl acetate using mesoporous nickel oxalates[J].Catalysis Communications,2014,43:88-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700