Cr13系铸造马氏体不锈钢铌和碳的合理配比关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Reasonable proportioning relationship between Nb and C of Cr13 series casting martensitic stainless steel
  • 作者:金洋帆 ; 臧其玉 ; 张拓 ; 杨弋涛
  • 英文作者:JIN Yang-fan;ZANG Qi-yu;ZHANG Tuo;YANG Yi-tao;School of Materials Science and Engineering,Shanghai University;
  • 关键词: ; 硬度 ; 显微组织 ; 碳化物 ; 马氏体不锈钢
  • 英文关键词:niobium;;hardness;;microstructure;;carbide;;martensitic stainless steel
  • 中文刊名:GANT
  • 英文刊名:Iron & Steel
  • 机构:上海大学材料科学与工程学院;
  • 出版日期:2019-03-15
  • 出版单位:钢铁
  • 年:2019
  • 期:v.54
  • 语种:中文;
  • 页:GANT201903016
  • 页数:9
  • CN:03
  • ISSN:11-2118/TF
  • 分类号:93-101
摘要
铌作为常用的微合金元素,常被用于细化晶粒、改善钢的强度与韧性,而在不锈钢中关于铌与碳化物质量分数的定量关系以及铌和碳的合理配比的研究工作尚不够深入。通过对不同铌质量分数的1Cr13与3Cr13马氏体不锈钢的组织、碳化物质量分数等进行观察和测量,总结出了比较合理的C-Nb关系式以及这两种元素对碳化物质量分数的影响的定量关系,并结合文献提出了铌元素对Cr13系列马氏体碳化物沉淀的影响原理。结果表明,铌会促进碳化物的沉淀并改变碳化物的成分(碳化物中出现铌元素),并且随着铌质量分数的增加,Cr13系列马氏体不锈钢中的碳化物都出现了指数型增长。得出Cr13系列马氏体不锈钢中碳化物的质量分数与碳和铌的质量分数存在指数型关系,同时合理的C-Nb关系配比呈线性。
        As a common micro-alloying element,Nb element is often used to refine the grain to improve strength and toughness of steel. However,the study on the quantitative relationship between Nb element and carbide mass percent and the reasonable ratio of Nb and C in stainless steel is not enough. The way Nb mass percent effect on the microstructure and carbides of 1 Cr13 and 3 Cr13 was observed and analyzed,a reasonable equation of C-Nb relation and the influence of these two elements on carbide mass percent of quantitative relationship have been obtained. Experiment results show that Nb elements can promote the precipitation of carbide and changing the composition of carbides(Nb element can be found in carbides). By the way,with the increase of Nb mass percent,the carbide in Cr13 series martensitic stainless steel increases exponentially. Finally,the mass percent of carbide and the mass percents of C and Nb in Cr13 series martensitic stainless steels has an exponential relationship. At the same time,the reasonable ratio of C-Nb relationship is linear.
引文
[1] Vignal V,Ringeval S,Thiebaut S,et al. Influence of the microstructure on the corrosion behaviour of low-carbon martensitic stainless steel after tempering treatment[J]. Corrosion Science,2014,85:42.
    [2]张二红,张华龙.马氏体不锈钢发展现状与趋势[J].煤矿机械,2014,35(14):16.(ZHANG Er-hong,ZHANG Hua-long.Martensitic stainless steel development status and trends[J].Coal Mine Machinery,2014,35(14):16.)
    [3]赵宏禹,刘荣佩,王长军,等. 9Ni马氏体不锈钢的热变形行为及其能量耗散图[J].钢铁,2018,53(9):74.(ZHAO Hong-yu,LIU Rong-pei,WANG Chang-jun,et al. Hot deformation behavior and energy dissipation diagram of 9Ni martensite stainless steel[J]. Iron and Steel,2018,53(9):74.)
    [4] Usama M A,Jeffrey R A. A review of micro-powder injection moulding as a microfabrication technique[J]. Journal of Icromechanics and Microengineering,2011,21:43001.
    [5] El-Sharif M R,Watson A,Chisholm C U. The sustained deposition of thick coatings of chromium/nickel and chromium/nickel/iron alloys and their properties[J]. Transactions of the IMF,1988,66:34.
    [6] Sanni O,Popoola A P I,Fayomi O S I. Enhanced corrosion resistance of stainless steel type 316 in sulphuric acid solution using eco-friendly waste product[J]. Results in Physics,2018,9:225.
    [7]陈安忠,任娟红,李照国,等.低铬和中铬含钛铁素体不锈钢高温氧化行为[J].中国冶金,2018,28(1):27.(CHEN Anzhong,REN Juan-hong,LI Zhao-guo,et al. High temperature oxidation behavior of low chromium and medium chromium titanium ferritic stainless steel[J]. China Metallurgy,2018,28(1):27.)
    [8]金国忠,裴和中,刘振宝,等.铬质量分数对超高强度不锈钢组织与性能的影响[J].钢铁,2018,53(9):69.(JIN Guozhong,PEI He-zhong,LIU Zhen-bao,et al. Effect of mass percent of chromium on microstructure and properties of ultra high strength stainless steel[J]. Iron and Steel,2018,53(9):69.)
    [9]崔利民,张欣杰,才丽娟.超级双相不锈钢生产工艺实践[J].中国冶金,2017,27(9):44.(CUI Li-min,ZHANG Xin-jie,CAI Li-juan. Process practice of super duplex stainless steel[J].China Metallurgy,2017,27(9):44.)
    [10] Schoof E,Schneider D,Streichhan N,et al. Multiphase-field modeling of martensitic phase transformation in a dual-phase microstructure[J]. International Journal of Solids and Structures,2018,134:181.
    [11] Hamasaki H,Ohno T,Nakano T,et al. Modelling of cyclic plasticity and martensitic transformation for type 304 austenitic stainless steel[J]. International Journal of Mechanical Sciences,2017,146/147:1.
    [12] Gualtieri T,Bandyopadhyay A. Additive manufacturing of compositionally gradient metal-ceramic structures:Stainless steel to vanadium carbide[J]. Materials and Design,2018,139:419.
    [13] Sahasrabudhe H,Harrison R,Carpenter C,et al. Stainless steel to titanium bimetallic structure using LENSTM[J]. Additive Manufacturing,2015,5:1.
    [14] Fujimura H,Tsuge S. Effect of Nb on strength and corrosion-resistance in low carbon martensitic stainless steel[J]. CAMPISIJ,1997,10:568.
    [15] MA X P,WANG L J,LIU C M,et al. Role of Nb in low interstitial 13Cr super martensitic stainless steel[J]. Materials Science and Engineering A,2011,528:6872.
    [16] YUAN J P,LI W. Antibacterial 316L stainless steel containing silver and niobium[J]. Rare Metal Materials and Engineering,2013,42(10):2004.
    [17] Baghjari S H,Ghaini F M,Previtali B,et al. The effect of electrospark nickel interlayer thickness on the characteristics of niobium to 410 stainless steel dissimilar laser welding[J]. Journal of Manufacturing Processes,2017,30:51.
    [18] JIN Y F,ZHANG T,ZANG Q Y,et al. Behavior of Nb influence on structure and properties of 30Cr13 cast martensitic stainless steel[J]. Journal of Iron and Steel Research,International,2018,https://doi.org/10.1007/s42243-018-0188-y.
    [19] Mohebbi M S,Rezayat M,Parsa M H,et al. The impact of Nb on dynamic microstructure evolution of an Nb-Ti microalloyed steel[J]. Materials Science and Engineering A,2018,723:194.
    [20] Dey I,Chandra S,Saha R,et al. Effect of Nb micro-alloying on microstructure and properties of thermo-mechanically processed high carbon pearlitic steel[J]. Materials Characterization,2018,140:45.
    [21] XIE Z J,SHANG C J,WANG X L,et al. Microstructure-property relationship in a low carbon Nb-B bearing ultra-high strength steel by direct-quenching and tempering[J]. Materials Science and Engineering A,2018,727:200.
    [22] Medeiros F F P,Silva A G P,Souza C P. Synthesis of niobium carbide at low temperature and its use in hardmetal[J]. Powder Technology,2002,126:155.
    [23] Karmakar A,Biswas S,Mukherjee S,et al. Effect of composition and thermo-mechanical processing schedule on the microstructure,precipitation and strengthening of Nb-microalloyed steel[J]. Materials Science and Engineering A,2017,690:158.
    [24] Wieczerzal K,Bala P,Dziurka R,et al. The effect of temperature on the evolution of eutectic carbides and M7C3→M23C6carbides reaction in the rapidly solidified Fe-Cr-C alloy[J]. Journal of Alloys and Compounds,2017,698:673.
    [25] Barnes N,Clark S,Seetharaman S,et al. Growth mechanism of primary needles during the solidification of chromium carbide overlays[J]. Acta Materialia,2018,151:356.
    [26] Woydt M,Huang S,Vleugels J,et al. Potentials of niobium carbide(NbC)as cutting tools and for wear protection[J]. International Journal of Refractory Metals and Hard Materials,2018,72:380.
    [27] Montenegro P,Gomes J,Rego R,et al. Potential of niobium carbide application as the hard phase in cutting tool substrate[J]. International Journal of Refractory Metals and Hard Materials,2018,70:116.
    [28] JIANG S H,WANG H,WU Y,et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature,2017:544(2):460.
    [29] LONG X Y,ZHANG F C,YANG Z N,et al. Study on microstructures and properties of carbide-free and carbide-bearing bainitic steels[J]. Materials Science and Engineering A,2018,715:10.
    [30] Pariente I F,Belzunce F J,Riba C. Mechanical strength and fracture toughness of high chromium white cast iron[J]. Materials Science and Technology,2008,24:981.
    [31] Jena P S M,Sahu J K,Rai R K,et al. Influence of duplex ferritic-austenitic matrix on two body abrasive wear behaviour of high chromium white cast iron[J]. Wear,2018,406/407:140.
    [32] WU D,WANG F M,CHENG J,et al. Effects of Nb and tempering time on carbide precipitation behavior and mechanical properties of Cr-Mo-V steel for brake discs[J]. Steel Research International,2018,89(5):1700491.
    [33] REN F C,CHEN F,CHEN J,et al. Hot deformation behavior and processing maps of AISI 420 martensitic stainless steel[J].Journal of Manufacturing Processes,2018,31:640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700