铁铝复合氧化物对两种细菌的吸附作用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the adsorption of Bacillus subtilis and Pseudomonas fluorescens on iron-aluminum composite oxides
  • 作者:董玉良 ; 徐苗 ; 刘方春 ; 任丽英
  • 英文作者:DONG Yuliang;XU Miao;LIU Fangchun;REN Liying;Shandong Provincial Key Laboratory of Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University;Shandong Academy of Forest, Shandong Engineering Research Center for Ecological Restoration of Forest Vegetation;
  • 关键词:铁铝复合氧化物 ; 枯草芽孢杆菌 ; 荧光假单胞菌 ; DLVO理论
  • 英文关键词:iron-aluminum composite oxide;;Bacillus subtilis;;Pseudomonas fluorescens;;DLVO theory
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:临沂大学资源环境学院山东省水土保持与环境保育重点实验室;山东省林业科学研究院山东省森林植被生态修复工程技术研究中心;
  • 出版日期:2018-12-28 08:41
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金(No.31570614,41673007,41201228);; 山东省自然科学基金(No.ZR2016BL26,ZR2018LD001);; 山东省林业科技创新项目(No.LYCX08-2018-41)
  • 语种:中文;
  • 页:HJXX201904021
  • 页数:6
  • CN:04
  • ISSN:11-1843/X
  • 分类号:195-200
摘要
铁铝氧化物是土壤的重要组分之一,其对土壤中有机无机组分的迁移具有重要影响.本文以枯草芽孢杆菌和荧光假单胞菌为研究对象,通过批吸附实验和DLVO理论,探究铁铝复合氧化物对细菌的粘附作用及其作用机制.结果表明,铁铝复合氧化物对细菌的粘附随着平衡浓度的增加而增加,吸附过程可用Langmuir方程拟合.铁铝1∶3复合氧化物对枯草芽孢杆菌和荧光假单胞菌的最大吸附量分别为3717.43和2792.29 mg·g~(-1),铁铝3∶1复合氧化物对枯草芽孢杆菌和荧光假单胞菌的最大吸附量分别为3455.58和2760.33 mg·g~(-1).随着pH值的增大,两种铁铝复合氧化物对两种细菌的吸附量均呈下降趋势.铁铝1∶3复合氧化物对两种细菌的吸附量均大于铁铝3∶1复合氧化物.静电吸引力是铁铝复合氧化物与细菌之间相互作用的主要因素之一.
        Iron(Fe) and aluminum(Al) oxides are important components of soil, playing a crucial role in controlling the migration of organic and inorganic components in soil. In this study, batch adsorption experiment and DLVO theory were employed to examine the adhesion characteristics and mechanism of Bacillus subtilis and Pseudomonas fluorescens on Fe-Al composite oxides. The results show that bacterial adhesion on Fe-Al composite oxides increased with increasing equilibrium concentration. The bacterial adsorption process could be fitted by the Langmuir equation. The maximum adsorption capacity of B. subtilis and P. fluorescens on Fe∶Al 1∶3 composite oxide was 3717.43 and 2792.29 mg·g~(-1), while that on Fe∶Al 3∶1 composite oxide was 3455.58 and 2760.33 mg·g~(-1), respectively. Furthermore, the bacterial adsorption on the two Fe-Al composite oxides is weakened with increasing solution pH, and the adsorption capacity of both the bacteria was higher on Fe∶Al 1∶3 oxide than that on Fe-Al 3∶1 oxide. Electrostatic attraction was noted to be one of the main factors responsible for bacterial adhesion on Fe-Al composite oxides.
引文
Bos R, Mei H C V D, Busscher H J. 1999. Physico-chemistry of initial microbial adhesive interactions-its mechanisms and methods for study[J]. FEMS Microbiology Reviews, 23(2):179-230
    Cai P, Huang Q Y, Walker S L. 2013. Deposition and survival of Escherichia coli O157:H7 on clay minerals in a parallel plate flow system [J]. Environmental Science and Technology,47(4):1896-1903
    Darabdhara G, Boruah P K, Hussain N, et al. 2017. Magnetic nanoparticles towards efficient adsorption of gram positive and gram negative bacteria: an investigation of adsorption parameters and interaction mechanism [J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 516:161-170
    Deo N, Natarajan K A, Somasundaran P. 2001. Mechanisms of adhesion of Paenibacillus polymyxa onto hematite, corundum and quartz [J]. International Journal of Mineral Processing, 62:27-39
    Franzblau R E, Daughney C J, Moreau M, et al. 2014. Selenate adsorption to composites of Escherichia coli and iron oxide during the addition, oxidation, and hydrolysis of Fe(II) [J]. Chemical Geology, 383(383):180-193
    Franzblau R E, Daughney C J, Moreau M, et al. 2015. Cu(II) removal by E.coli -iron oxide composites during the addition and oxidation of Fe(II) [J]. Chemical Geology, 409:136-148
    ssbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions[J]. Journal of Molecular Structure, 834-836:445-453
    Hamadi F, Latrache H, Zahir H, et al. 2011. Evaluation of the relative cell surface charge by using microbial adhesion to hydrocarbon [J]. Microbiology, 80:488-491
    Hendricks D W, Post F J, Khairnar D R. 1979. Adsorption of bacteria on soils: experiments, thermodynamic rationale and application [J]. Water Air Soil Pollution, 12:219-232
    Hong Z N, Jiang J, Li J Y, et al. 2018. Preferential adhesion of surface groups of Bacillus subtilis on gibbsite at different ionic strengths and pHs revealed by ATR-FTIR spectroscopy [J]. Colloids and Surfaces B: Biointerfaces, 165:83-91
    Hong Z N, Rong X M, Cai P, et al. 2012. Initial adhesion of Bacillus subtilis on soil minerals as related to their surface properties[J]. European Journal of Soil Science, 63:457-466
    Huang Q Y, Chen W L, Xu L H. 2005. Adsorption of copper and cadmium by Cu and Cd-resistant bacteria and their composites with soil colloids and kaolinite [J]. Geomicrobiology Journal, 22: 227-236
    Jiang D, Huang Q, Cai P, et al. 2007. Adsorption of Pseudomonas putida on clay minerals and iron oxide [J]. Colloids and Surfaces B: Biointerfaces, 54:217-221
    蒋代华, 黄巧云, 蔡鹏,等. 2007.粘粒矿物对细菌吸附的测定方法[J]. 土壤学报, 44(4):656-662
    Liu Z D, Wang H C, Li J Y, et al. 2015a. Adhesion of Escherichia coli, and Bacillus subtilis, to amorphous Fe and Al hydroxides and their effects on the surface charges of the hydroxides[J]. Journal of Soils and Sediments, 15(11):2293-2303
    Liu Z D, Hong Z N, Li J Y, et al. 2015b. Interactions between Escherchia coli and the colloids of three variable charge soils and their effects on soil surface charge properties [J]. Geomicrobiology Journal, 32(6):511-520
    Loosdrecht M C M V, Lyklema J, Norde W, et al. 1989. Bacterial adhesion: A physicochemical approach [J]. Microbial Ecology, 17:1-15
    Lower S K, Hochella M F J R, Beveridge T J. 2001. Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha-FeOOH [J]. Science, 292:1360-1363
    Poortinga A T, Bos R, Norde W, et al. 2002. Electric double layer interactions in bacterial adhesion to surfaces [J]. Surface Science Reports, 47:1-32
    Qu C C, Ma M K, Chen W L, et al. 2018. Modeling of Cd adsorption to goethite-bacteria composites [J]. Chemosphere, 193:943-950
    任丽英, 赵敏, 董玉良,等. 2014. 两种铁氧化物对土壤有效态汞的吸附作用研究 [J]. 环境科学学报, 34(3):749-753
    Ren L Y, Hong Z N, Liu Z D,et al. 2018. ATR-FTIR investigation of mechanisms of Bacillus subtilis adhesion onto variable- and constant-charge soil colloids [J]. Colloids and Surfaces B: Biointerfaces, 162:288-295
    荣兴民, 黄巧云, 陈雯莉, 等. 2011. 细菌在两种土壤矿物表面吸附的热力学分析 [J]. 土壤学报, 48(2):331-337
    宋长青, 吴金水, 陆雅海, 等. 2013. 中国土壤微生物学研究10年回顾 [J]. 地球科学进展, 10(10):1087-1105
    Vasiliadou I A, Chrysikopoulos C V. 2011. Cotransport of Pseudomonas putida and kaolinite particles through water-saturated columns packed with glass beads [J]. Water Resources Research, 47:2144-2150
    Wu H, Chen W, Rong X, et al. 2014. Adhesion of Pseudomonas putida onto kaolinite at different growth phases [J]. Chemical Geology, 390:1-8
    Yee N, Fein J B, Daughney C J. 2000. Experimental study of the pH, ionic strength, and reversibility behavior of bacteria-mineral adsorption [J]. Geochim Cosmochim Acta, 64:609-617
    Zhang Z N, Yin N Y, Du H L, et al. 2016.The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria [J]. Chemosphere, 151:108-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700