锂离子电池硅/碳负极材料的制备与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Application of Silicon/carbon Anodes for Lithium-ion Batteries
  • 作者:刘旭燕 ; 朱新杰 ; 陆友才 ; 潘登
  • 英文作者:LIU Xuyan;ZHU Xinjie;LU Youcai;PAN Deng;School of Mechanical Engineering,University of Shanghai for Science and Technology;
  • 关键词:锂离子电池 ; 硅/碳负极 ; 纳米化 ; 改性
  • 英文关键词:lithium-ion batteries;;silicon/carbon anodes;;nanostructures;;modification
  • 中文刊名:SHHA
  • 英文刊名:Nonferrous Metal Materials and Engineering
  • 机构:上海理工大学机械工程学院;
  • 出版日期:2018-02-15
  • 出版单位:有色金属材料与工程
  • 年:2018
  • 期:v.39;No.184
  • 基金:国家自然科学基金资助项目(61504080)
  • 语种:中文;
  • 页:SHHA201801009
  • 页数:8
  • CN:01
  • ISSN:31-2125/TF
  • 分类号:53-60
摘要
对锂离子电池中硅/碳负极材料的纳米结构、掺杂改性以及三元复合等制备工艺及其电化学性能、相关机理进行了总结。通过研究不同改性方法对硅/碳负极材料电化学性能的影响,以找到较为优异的改性路径。经过对比发现,通过采用纳米结构、原子掺杂以及三元复合的方法均可显著提升硅/碳负极材料的电化学性能。最后对硅/碳负极材料发展现状进行了简要分析,并对其研究前景进行了展望。
        The electrochemical properties of silicon/carbon anodes for lithium-ion batteries with nanostructures,doping modification and ternary composites and the relevant mechanism are summarized in this paper. In orde to find out better modification methods for silicon/carbon anodes,the influence of various ways on their electrochemical performance are also investigated in detail. Besides,it is found that modification methods such as using nanostructures,heteroatom doping and ternary compound methods can significantly improve the electrochemical performance of silicon/carbon anode materials. In addition,the current development situation of the silicon/carbon anode materials is briefly analyzed and the research prospects are also discussed.
引文
[1]BENAOUADJ M,ABOUBOU A,AYAD M Y,et al.Fuel cells,batteries and super-capacitors standalone pow er systems management using optimal/flatness based-control[J].Technologies&Materials for Renew able Energy,2016,1758(1):333-341.
    [2]NITTA N,WU F X,LEE J T,et al.Li-ion battery materials:present and future[J].Materials Today,2015,18(5):252-264.
    [3]HUANG B,LI X,WANG Z X,et al.A comprehensive study on electrochemical performance of Mnsurfacemodified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method[J].Journal of Pow er Sources,2014,252:200-207.
    [4]SZCZECH J R,JIN S.Nanostructured silicon for high capacity lithium battery anodes[J].Energy&Environmental Science,2011,4(1):56-72.
    [5]ZHU C Y,HAN K,GENG D S,et al.Achieving highperformance silicon anodes of lithium-ion batteries via atomic and molecular layer deposited surface coatings:an overview[J].Electrochimica Acta,2017,251:710-728.
    [6]WU H,CHAN G,CHOI J W,et al.Stable cycling of double-w alled silicon nanotube battery anodes through solid-electrolyte interphase control[J].Nature Nanotechnology,2012,7:310-315.
    [7]LU Z Z,WONG T L,NG T W,et al.Facile synthesis of carbon decorated silicon nanotube arrays as anode material for high-performance lithium-ion batteries[J].RSC Advances,2014,4(5):2440-2446.
    [8]FAN Y,ZHANG Q,XIAO Q,et al.High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanow ires w ith controlled morphology[J].Carbon,2013,59(7):264-269.
    [9]LYU Y Y,WU Z X,FANG Y,et al.Hierarchical mesoporous/microporous carbon w ith graphitized framew orks for high-performance lithium-ion batteries[J].Apl Materials,2014,2(11):113302.
    [10]QIAN J,MA J Q,HE W W,et al.Facile synthesis of prussian blue derivate-modified mesoporous material via photoinitiated thiol-ene click reaction for cesium adsorption[J].Chemistry-An Asian Journal,2015,10(8):1738-1744.
    [11]MA T,ZHAO Q,WANG J,et al.A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery[J].Angew andte Chemie,2016,55(22):6428-6432.
    [12]DING W H,LEI X L,OUYANG C Y.Coordination of lithium ion w ith ethylene carbonate electrolyte solvent:A computational study[J].International Journal of Quantum Chemistry,2016,116(2):97-102.
    [13]MA X M,LIU M X,GAN L H,et al.Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries[J].Physical Chemistry Chemical Physics,2014,16(9):4135-4142.
    [14]BOKE F,GINER I,KELLER A,et al.Plasmaenhanced chemical vapor deposition(PE-CVD)yields better hydrolytical stability of biocompatible SiOx thin films on implant alumina ceramics compared to rapid thermal evaporation physical vapor deposition(PVD)[J].Acs Applied Materials&Interfaces,2016,8(28):17805-17816.
    [15]FUKUI H,OHSUKA H,HINO T,et al.Influence of polystyrene/phenyl substituents in precursors on microstructures of Si-O-Ccomposite anodes for lithium-ion batteries[J].Journal of Pow er Sources,2011,196(1):371-378.
    [16]SALLEH E M,RAMAKRISHNAN S,HUSSAIN Z.Synthesis of biodegradable Mg-Zn alloy by mechanical alloying:effect of milling time[J].Procedia Chemistry,2016,19:525-530.
    [17]KUMAR M A,BEYERLEIN I J,LEBENSOHN R A,et al.Role of alloying elements on tw in grow th and tw in transmission in magnesium alloys[J].Materials Science and Engineering:A,2017,706:295-303.
    [18]ZIABICKI A.Fundamentals of fiber formation[M].London:John Wiley and Sons,1976.
    [19]WANG B,SUN L,WU N,et al.Combined synthesis of aligned SiC nanofibers via electrospinning and carbothermal reduction[J].Ceramics International,2017,43(13):10619-10623.
    [20]WANG P,CHENG L F,ZHANG Y N,et al.Synthesis of SiC nanofibers w ith superior electromagnetic w ave absorption performance by electrospinning[J].Journal of Alloys and Compounds,2017,716:306-320.
    [21]LIU Q,ZHU J H,ZHANG L W,et al.Recent advances in energy materials by electrospinning[J].Renew able and Sustainable Energy Review s,2017,81:1825-1858.
    [22]QIANG X F,LI H J,ZHANG Y L,et al.Synthesis and toughening effect of SiC nanow ires w rapped by carbon nanosheet on C/C composites[J].Journal of Alloys and Compounds,2016,676:245-250.
    [23]DONG Z J,MENG J,ZHU H,et al.Synthesis of SiCnanow ires via catalyst-free pyrolysis of siliconcontaining carbon materials derived from a hybrid precursor[J].Ceramics International,2017,43(14):11006-11014.
    [24]FARHAN S,WANG R M,LI K Z.Characterization of latticed SiC nanow ires containing coating for carbon foam using carbonization activated pack cementation process[J].Journal of Alloys and Compounds,2016,682:695-705.
    [25]SHEN Q L,LI H J,LI L,et al.SiC nanow ire reinforced carbon/carbon composites w ith improved interlaminar strength[J].Materials Science&Engineering:A,2016,651:583-589.
    [26]YUAN Y,WU L,ZHI J.Carbon nanow ires obtained by tempering diamantane dicarboxylic acid inside carbon nanotubes[J].Angew andte Chemie,2014,53:14326-14351.
    [27]CUI L F,YANG Y,HSU C M,et al.Carbon-silicon core-shell nanow ires as high capacity electrode for lithium ion batteries[J].Nano Letters,2009,9(9):3370-3375.
    [28]ZHOU S S,CHEN J N,GAN L,et al.Scalable production of self-supported WS2/CNFs by electrospinning as the anode for high-performance lithium-ion batteries[J].Science Bulletin,2016,61(3):227-235.
    [29]ZHAO H,YIN H,YU X X,et al.In2O3 nanoparticles/carbon fiber hybrid mat as free-standing anode for lithium-ion batteries w ith enhanced electrochemical performance[J].Journal of Alloys and Compounds,2018,735:319-326.
    [30]LI S L,CHEN C,FU K,et al.Nanosized Ge@CNF,Ge@C@CNF and Ge@CNF@C composites via chemical vapour deposition method for use in advanced lithium-ion batteries[J].Journal of Pow er Sources,2014,253:366-372.
    [31]FU K,XUE L G,YILDIZ O,et al.Effect of CVDcarbon coatings on Si@CNF composite as anode for lithium-ion batteries[J].Nano Energy,2013,2(5):976-986.
    [32]SHU J,MA R,SHUI M,et al.Facile fabrication of conducting hollow carbon nanofibers/Si composites for copper phthalocyanine-based field effect transistors and high performance lithium-ion batteries[J].RSC Advances,2012,2(22):8323-8331.
    [33]FANG S,SHEN L,ZHANG X.Application of carbon nanotubes in lithium-ion batteries[M].Industrial Applications of Carbon Nanotubes.Amsterdam:Elsevier Inc,2017.
    [34]YU W J,LIU C,HOU P X,et al.Lithiation of silicon nanoparticles confined in carbon nanotubes[J].ACS Nano,2015,9(5):5063-5071.
    [35]ZHAO T K,SHE S F,JI X L,et al.In-situ grow th amorphous carbon nanotube on silicon particles as lithium-ion battery anode materials[J].Journal of Alloys and Compounds,2017,708:500-507.
    [36]MEHRALI M,LATIBARI S T,MEHRALI M,et al.Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage[J].Energy Conversion&Management,2014,88(5):206-213.
    [37]AN W L,FU J J,SU J J,et al.Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes[J].Journal of Pow er Sources,2017,345(31):227-236.
    [38]ZENG S Z,YAO Y C,ZENG X R,et al.A composite of hollow carbon nanospheres and sulfur-rich polymers for lithium-sulfur batteries[J].Journal of Pow er Sources,2017,357(31):11-18.
    [39]ZHOU Y,GUO H J,YANG Y,et al.Facile synthesisof silicon/carbon nanospheres composite anode materials for lithium-ion batteries[J].Materials Letters,2016,168:138-142.
    [40]PARK S W,SHIM H W,KIM J C,et al.Uniform Si nanoparticle-embedded nitrogen-doped carbon nanofiber electrodes for lithium ion batteries[J].Journal of Alloys and Compounds,2017,728:490-496.
    [41]LEI C,HAN F,LI D,et al.Dopamine as the coating agent and carbon precursor for the fabrication of Ndoped carbon coated Fe3O4 composites as superior lithium ion anodes[J].Nanoscale,2013,5(3):1168-1175.
    [42]WEN Z H,LU G H,CUI S M,et al.Rational design of carbon netw ork cross-linked Si-SiC hollow nanosphere as anode of lithium-ion batteries[J].Nanoscale,2014,6(1):342-351.
    [43]SHIN W H,JEONG H M,KIM G C,et al.Nitrogendoped multiw all carbon nanotubes for lithium storage w ith extremely high capacity[J].Nano Letters,2012,12(5):2283-2288.
    [44]JEONG H M,LEE J W,SHIN W H,et al.Nitrogendoped graphene for high-performance ultra capactors and the importance of nitrogen-doped sitesat basal planes[J].Nano Letters,2011,11:2472-2477.
    [45]SHEN X D,JIANG W F,SUN H J,et al.Ionic liquid assist to prepare Si@N-doped carbon nanoparticles and its high performance in lithium ion batteries[J].Journal of Alloys and Compounds,2017,691:178-184.
    [46]WU W J,LIANG Y H,MA H Y,et al.Insights into the conversion behavior of SiO-C hybrid w ith pretreated graphite as anodes for Li-ion batteries[J].Electrochimica Acta,2016,187:473-479.
    [47]CHEN M,WANG Z L,WANG A N,et al.Novel self assembled natural graphite based composite anodes w ith improved kinetic properties in lithium-ion batteries[J].Journal of Materials Chemistry A,2016,4:9865-9872.
    [48]JUNG H,KIM K S,PARK S E,et al.The structural and electrochemical study on the blended anode w ith graphite and silicon carbon nano composite in Li ion battery[J].Electrochimica Acta,2017,245:791-795.
    [49]YANG J,ZHOU X Y,LI J,et al.Study of nanoporous hard carbons as anode materials for lithium ion batteries[J].Materials Chemistry and Physics,2012,135:445-450.
    [50]WANG Z L,MAO Z M,LAI L F,et al.Sub-micron silicon/pyrolyzed carbon@natural graphite selfassembly composite anode material for lithium-ion batteries[J].Chemical Engineering Journal,2017,313:187-196.
    [51]TOKUR M,ALGULH,UYSAL M,et al.Electrolytic coating of Sn nano-rods on nickel foam support for high performance lithium ion battery anodes[J].Surface&Coatings Technology,2016,288:62-68.
    [52]TOKUR M,ALGUL H,OZCAN S,et al.Closing to scaling-up high reversible Si/rGO nanocomposite anodes for lithium ion batteries[J].Electrochimica Acta,2016,216:312-319.
    [53]YI R,ZAI J T,DAI F,et al.Dual conductive netw ork-enabled graphene/Si-C composite anode w ith high areal capacity for lithium-ion batteries[J].Nano Energy,2014,6:211-218.
    [54]PAN Q R,ZUO P J,LOU S F,et al.Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries[J].Journal of Alloys and Compounds,2017,723:434-440.
    [55]GUZMAN R C D,YANG J,CHENG M M C,et al.Effects of graphene and carbon coating modifications on electrochemical performance of silicon nanoparticle/graphene composite anode[J].Journal of Power Sources,2014,246:335-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700