阿尔茨海默病患者外周血和脑组织GPI基因表达观察及其功能的生物信息学分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Observation of GPI gene expression and bioinformatics analysis of its function in peripheral blood and brain tissues of patients with Alzheimer's disease
  • 作者:马国维 ; 钟欣 ; 杜可 ; 宫世强 ; 刘明妍 ; 魏敏杰
  • 英文作者:MA Guowei;ZHONG Xin;DU Ke;GONG Shiqiang;LIU Mingyan;WEI Minjie;College of Pharmacy,China Medical University;
  • 关键词:阿尔茨海默病 ; 磷酸葡萄糖异构酶 ; 生物信息学分析 ; 能量代谢
  • 英文关键词:Alzheimer's disease;;glucose-6-phosphate isomerase;;bioinformatics analysis;;energy metabolism
  • 中文刊名:SDYY
  • 英文刊名:Shandong Medical Journal
  • 机构:中国医科大学药学院;
  • 出版日期:2018-12-28
  • 出版单位:山东医药
  • 年:2018
  • 期:v.58;No.1122
  • 基金:国家自然科学基金资助项目(81501098,81703519,81803751);; “重大新药创制”科技重大专项课题(2018ZX09711001-008-006);; 沈阳市科技创新“双百工程”项目(100040)
  • 语种:中文;
  • 页:SDYY201848001
  • 页数:4
  • CN:48
  • ISSN:37-1156/R
  • 分类号:6-9
摘要
目的基于GEO芯片技术观察阿尔茨海默病(AD)患者外周血和脑组织磷酸葡萄糖异构酶(GPI)基因的表达情况,分析GPI基因的功能及其与AD发病的关系。方法获取健康老年人大脑额叶皮质样本18例份、颞叶皮质样本19例份、海马样本19例份、外周血样本14例份及AD患者大脑额叶皮质样本15例份、颞叶皮质样本10例份、海马样本29例份、外周血样本14例份。利用GEO数据库筛选适用于AD的相关芯片,检测健康老年人及AD患者外周血、脑组织样本GPI基因。借助蛋白-蛋白相互作用(PPI)网络图筛选GPI的相关基因;通过基因本体(GO)分析及京都基因和基因组百科全书(KEGG)功能富集分析,筛选GPI基因可能参与并主要影响的生物学功能或通路。结果外周血芯片分析结果显示,健康老年人中,女性外周血GPI基因表达量低于男性,且低于男性AD患者(P均<0. 05);相同性别人群中,AD患者外周血GPI基因表达量低于健康老年人(P均<0. 05)。脑组织芯片分析结果显示,AD患者海马组织GPI基因表达明显下调,低于额叶、颞叶皮质(P均<0. 05); GPI基因表达量随AD病情加重而持续减少(P均<0. 05)。通过PPI网络图,共筛选出10个与GPI高度相关基因,分别为PKM、TPI1、PFKL、PKLR、PGM1、PFKP、ENO3、PFKM、H6PD、TKT。GO分析及KEGG功能富集分析结果显示,GPI基因与其相关的10个基因在功能富集上与糖酵解、合成、分解、代谢等能量代谢过程高度相关。结论 AD患者外周血及海马组织GPI基因表达下调,随AD病情加重,其表达持续减少; GPI基因与其相关基因可能参与AD患者海马脑区能量代谢的功能调控。
        Objective The expression of glucose-6-phosphate isomerase( GPI) gene in peripheral blood and brain tissues of patients with Alzheimer's disease( AD) was observed based on GEO chip technology,and the relationship between GPI function and the pathogenesis of AD was analyzed. Methods We obtained 18 cases of frontal cortex,19 cases of temporal cortex,19 cases of hippocampus,and 14 cases of peripheral blood samples from the healthy elderly. In the AD patients,15 cases of the frontal cortex of the brain,10 cases of the temporal cortex,29 cases of the hippocampus,and 14 cases of the peripheral blood samples were selected. The GEO database was used to screen the relevant chips for AD,and the GPI genes in peripheral blood samples and brain tissue samples of the healthy elderly and AD patients were detected.Screening out the genes related to GPI via protein-protein interaction( PPI) network map. Gene function enrichment analysis was performed by gene ontology( GO) analysis and we used the Kyoto Gene and Genomic Encyclopedia( KEGG) for the enrichment analysis and to screen out the biological functions or pathways in which GPI genes may be involved and primarily affected. Results Peripheral blood microarray analysis showed that the expression of GPI gene in the peripheral blood of females was lower than that in males,and was lower than that in male AD patients( P < 0. 05). In the same gender group,the expression of GPI gene in the peripheral blood of AD patients was lower than that in the healthy people( P< 0. 05). The results of brain tissue microarray analysis showed that the expression of GPI gene in the hippocampus of AD patients was significantly down-regulated,which was lower than that of the other brain regions( frontal and temporal cortex)and was not related to gender( P < 0. 05). The expression of GPI gene continued to decrease with the severity of AD( P <0. 05). Ten highly GPI-related genes were screened out by PPI network map,including PKM,TPI1,PFKL,PKLR,PGM1,PFKP,ENO3,PFKM,H6 PD,and TKT. GO analysis and KEGG functional enrichment analysis showed that the GPI gene and its related 10 genes were highly correlated with energy metabolism processes such as glycolysis,synthesis,decomposition and metabolism in functional enrichment. Conclusion The expression of GPI gene was down-regulated in the peripheral blood and hippocampus of AD patients,and the expression of GPI is continuously decreased with the increase of AD disease; GPI gene and its related genes might be involved in the functional regulation of energy metabolism in the hippocampus of AD patients.
引文
[1]Alzheimer A. Uber eine eigenartige Erkrankung der Hirnrinde[J].Allg Z Psych-Gerichtl Med,1907,64:146-148.
    [2]Isaev NK,Stelmashook EV,Genrikhs EE,et al. Alzheimer's disease:an exacerbation of senile phenoptosis[J]. Biochemistry(Mosc),2015,80(12):1578-1581.
    [3]Barnett JH,Lewis L,Blackwell AD,et al. Early intervention in Alzheimer's disease:a health economic study of the effects of diagnostic timing[J]. BMC Neurol,2014,14:101.
    [4] Kumar S,Zomorrodi R,Ghazala Z,et al. Extent of dorsolateral prefrontal cortex plasticity and its association with working memory in patients with Alzheimer disease[J]. JAMA Psychiatry,2017,74(12):1266-1274.
    [5]Marcus C,Mena E,Subramaniam RM. Brain PET in the diagnosis of Alzheimer's disease[J]. Clin Nucl Med,2014,39(10):e413-e426.
    [6]Bhat S,Acharya UR,Dadmehr N,et al. Clinical neurophysiological and automated EEG-based diagnosis of the Alzheimer's disease[J]. Eur Neurol,2015,74(3-4):202-210.
    [7]Fiandaca MS,Mapstone ME,Cheema AK,et al. The critical need for defining preclinical biomarkers in Alzheimer's disease[J].Alzheimers Dement,2014,10(3 Suppl):S196-S212.
    [8]Banwait JK,Bastola DR. Contribution of bioinformatics prediction in microRNA-based cancer therapeutics[J]. Adv Drug Deliv Rev,2015,81:94-103.
    [9]Blass JP,Sheu RK,Gibson GE. Inherent abnormalities in energy metabolism in Alzheimer disease. Interaction with cerebrovascular compromise.[J]. Ann N Y Academ Sci,2010,903:204-221.
    [10]Cunnane S,Nugent S,Roy M,et al. Brain fuel metabolism,aging,and Alzheimer's disease[J]. Nutrition,2011,27(1):3-20.
    [11]Imtiaz B,Tolppanen AM,Kivipelto M,et al. Future directions in Alzheimer's disease from risk factors to prevention[J]. Biochem Pharmacol,2014,88(4):661-670.
    [12]Rossi S,Zanier ER,Mauri I,et al. Brain temperature,body core temperature,and intracranial pressure in acute cerebral damage[J]. J Neurol Neurosurg Psych,2001,71(4):448-454.
    [13]The UniProt Consortium. UniProt:the universal protein knowledgebase[J]. Nucleic Acids Res,2017,45:D158-D169.
    [14]Yin F,Sancheti H,Liu Z,et al. Mitochondrial function in ageing:coordination with signalling and transcriptional pathways[J]. J Physiol,2016,594(8):2025-2042.
    [15]Swerdlow RH,Burns JM,Khan SM. The Alzheimer's Disease Mitochondrial Cascade Hypothesis[J]. J Alzheim Dis,2010,20(2):265-279.
    [16]Tsutsumi S,Yanagawa T,Shimura T,et al. Regulation of cell proliferation by autocrine motility factor/phosphoglucose isomerase signaling[J]. J Biol Chem,2003,278(34):32165-32172.
    [17]Luo Y,Long JM,Lu C,et al. A link between maze learning and hippocampal expression of neuroleukin and its receptor gp78[J]. J Neurochem,2002,80(2):354-361.
    [18]Yin F,Sancheti H,Patil I,et al. Energy metabolism and inflammation in brain aging and Alzheimer's disease[J]. Free Rad Biol Med,2016,100:108-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700