玉米应答低磷胁迫机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in Research on Mechanism of Response to Low Phosphorus Stress in Maize
  • 作者:张晗菡 ; 魏清岗 ; 穆春华 ; 孙验玲 ; 张华 ; 张恩盈 ; 刘霞
  • 英文作者:Zhang Hanhan;Wei Qinggang;Mu Chunhua;Sun Yanling;Zhang Hua;Zhang Enying;Liu Xia;Agromony College of Qingdao Agricultural University;Maize Research Institute,Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Maize Biology and Genetics and Breeding in Northern Huang-Huai-Hai River Plain;Sci-Tech Information Institute,Shandong Academy of Agricultural Sciences;College of Life Sciences,Shandong Normal University;
  • 关键词:玉米 ; ; 低磷胁迫
  • 英文关键词:Maize;;Nitrogen;;Low phosphorus stress
  • 中文刊名:AGRI
  • 英文刊名:Shandong Agricultural Sciences
  • 机构:青岛农业大学农学院;山东省农业科学院玉米研究所/小麦玉米国家工程实验室/农业部黄淮海北部玉米生物学与遗传育种重点实验室;山东省农业科学院科技信息研究所;山东师范大学生命科学学院;
  • 出版日期:2019-06-30
  • 出版单位:山东农业科学
  • 年:2019
  • 期:v.51;No.334
  • 基金:公益性行业(农业)科研专项(201503130);; 山东省重点研发计划项目(2017CXGC0311);; 山东省农业科学院科技创新重点项目(2014CXZ06-3)
  • 语种:中文;
  • 页:AGRI201906034
  • 页数:6
  • CN:06
  • ISSN:37-1148/S
  • 分类号:181-186
摘要
玉米是我国重要的粮食、饲料及生物能源作物,低磷胁迫严重影响其品质和产量。氮对拟南芥的缺磷反应具有积极的调控作用,并且在水稻和小麦中得到验证,但在玉米中,氮与低磷胁迫响应机制的相互作用尚未见系统报道。本研究综述内容主要有国内外有关低磷胁迫对玉米生长发育的影响、玉米应答低磷胁迫的生理基础和分子机制,以及氮参与调控玉米应答低磷胁迫的相关机制等,以期为后续研究玉米应答低磷胁迫的分子机制提供参考。
        Maize is an important food, feed and bioenergy crop in China. Low phosphorus stress has a serious impact on its quality and yield. Nitrogen has a positive regulatory effect on phosphorus deficiency in Arabidopsis, and has been verified in rice and wheat. But in maize, the interaction between nitrogen and low phosphorus stress has not been systematically reported. In this paper, the effects of low phosphorus stress on maize growth and development, the physiological basis and molecular mechanism of maize responsing to low phosphorus stress were introduced, and also the mechanism of nitrogen in regulating maize response to low phosphorus stress. It could provide theoretical references for the follow-up study on the molecular mechanism of maize response to low phosphorus stress.
引文
[1] Calderón-Vázquez C,Sawers R J H,Herrera-Estrella L.Phosphate deprivation in maize:genetics and genomics[J].Plant Physiol.,2011,156(3):1067-1077.
    [2] 张庆春,张玉乐,孔景萍.氮、磷、钾在植物生长中的作用[J].河南科技(乡村版),2009(2):22.
    [3] 吴珊,林丹.玉米磷转运蛋白基因ZmPht3;1的克隆和功能分析[J].生物技术通报,2016,32(12):65-71.
    [4] 郑璐,包媛媛,张鑫臻,等.植物磷转运蛋白基因的研究进展[J].生态环境学报,2017,26(2):342-349.
    [5] Grennan A K.Phosphate accumulation in plants:signaling[J].Plant Physiology,2008,148(1):3-5.
    [6] 陈宇.低磷胁迫下不同玉米自交系幼苗的生长、磷素分配特征及相关响应基因表达研究[D].乌鲁木齐:新疆农业大学,2016.
    [7] Hernández G,Ramírez M,Valdés-López O,et al.Phosphorus stress in common bean:root transcript and metabolic responses[J].Plant Physiology,2007,144(2):752-767.
    [8] 邢素芝,张平,周毅,等.低磷胁迫下氮素形态对玉米苗期生物学性状、花青苷含量及糖含量的影响[J].热带作物学报,2013,34(2):254-258.
    [9] 陈磊,王盛锋,刘自飞,等.低磷条件下植物根系形态反应及其调控机制[J].中国土壤与肥料,2011(6):1-12.
    [10] Osmont K S,Sibout R,Hardtke C S.Hidden branches:developments in root system architecture[J].Annual Review of Plant Biology,2007,58:93-113.
    [11] 樊明寿.低磷胁迫条件下植物根内通气组织的形成及其可能的生理作用[D].北京:中国农业大学,2001.
    [12] Jeschke W D,Kirkby E A,Peuke A D,et al.Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean (Ricinus communis L.)[J].Journal of Experimental Botany,1997,48(1):75-91.
    [13] Wasaki J,Shinano T,Onishi K,et al.Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves[J].Journal of Experimental Botany,2006,57(9):2049-2059.
    [14] Duff S M,Moorhead G B,Lefebvre D D,et al.Phosphate starvation inducible ‘Bypasses’ of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells[J].Plant Physiology,1989,90(4):1275-1278.
    [15] Rubio V,Bustos R,Irigoyen M L,et al.Plant hormones and nutrient signaling[J].Plant Molecular Biology,2009,69(4):361-373.
    [16] Franco-Zorrilla J M,Martín A C,Leyva A,et al.Interaction between phosphate-starvation,sugar,and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3[J].Plant Physiology,2005,138(2):847-857.
    [17] Nacry P,Canivenc G,Muller B,et al.A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis[J].Plant Physiology,2005,138(4):2061-2074.
    [18] Pérez-Torres C A,López-Bucio J,Cruz-Ramírez A,et al.Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor[J].Plant Cell,2008,20(12):3258-3272.
    [19] Li K,Xu C,Zhang K,et al.Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants[J].Proteomics,2007,7(9):1501-1512.
    [20] 张新蕊.生长素和赤霉素参与调节低磷胁迫下玉米根系形态的改变[D].济南:山东大学,2011.
    [21] 田秋英.根系形态在玉米高效获取氮素中的作用及其生理调节机制[D].北京:中国农业大学,2005.
    [22] Tzu-Yin L,Kyaw A,Tseng C Y,et al.Vacuolar Ca2+/H+ transport activity is required for systemic phosphate homeostasis involving shoot-to-root signaling in Arabidopsis[J].Plant Physiology,2011,156(3):1176-1189.
    [23] Nagarajan V K,Jain A,Poling M D,et al.Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling[J].Plant Physiology,2011,156(3):1149-1163.
    [24] Wu Z,Ren H,McGrath S P,et al.Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice[J].Plant Physiology,2011,157(1):498-508.
    [25] Bun-Ya M,Nishimura M,Harashima S,et al.The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter[J].Molecular Cellular Biology,1991,11(6):3229-3238.
    [26] Mudge S R,Rae A L,Diatloff E,et al.Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis[J].The Plant Journal,2002,31 (3):341-353.
    [27] Yu J,Hu S,Wang J,et al.A draft sequence of the rice genome (Oryza sativa L.ssp.indica) [J].Science,2001,46(23):1937-1942.
    [28] Shin H,Shin H S,Dewbre G R,et al.Phosphate transport in Arabidopsis:Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments[J].The Plant Journal,2004,39 (4):629-642.
    [29] Tesfaye M,Liu J,Allan D L,et al.Genomic and genetic control of phosphate stress in legumes[J].Plant Physiology,2007,144(2):594-603.
    [30] Li Z,Gao Q,Liu Y,et al.Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth[J].Planta,2011,233:1129-1143.
    [31] 汪洪,高翔,陈磊,等.硝态氮供应下植物侧根生长发育的响应机制[J].植物营养与肥料学报,2011,17(4):1005-1011.
    [32] Lin S I,Chiang S F,Lin W Y,et al.Regulatory network of microRNA399 and PHO2 by systemic signaling[J].Plant Physiology,2008,147(2):732-746.
    [33] Garnett T,Conn V,Kaiser B N.Root based approaches to improving nitrogen use efficiency in plants[J].Plant Cell Environ.,2009,32(9):1272-1283.
    [34] Amtmann A,Armengaud P.Effects of N,P,K and S on metabolism:new knowledge gained from multi-level analysis [J].Current Opinion in Plant Biology,2009,12(3):275-283.
    [35] Wang Y Y,Hsu P K,Tsay Y F.Uptake,allocation and signaling of nitrate[J].Trends Plant Sci.,2012,17(8):458-67.
    [36] 冯娟娟.拟南芥HRS1基因在种子萌发和侧根发育中的生物学功能研究[D].北京:中国科学院大学,2010.
    [37] Medici A,Marshall-Colon A,Ronzier E,et al.AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip[J].2015,6:6274.
    [38] Medici A,Szponarski W,Dangeville P,et al.Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants[J].Plant Cell,2019,31:1174-1184.
    [39] Huang T K,Han C L ,Lin S I,et al.Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots[J].Plant Cell,2013,25(10):4044-4060.
    [40] Bari R.PHO2,MicroRNA399,and PHR1 define a phosphate-signaling pathway in plants[J].Plant Physiology,2006,141(3):988-999.
    [41] 许长征.玉米根系对低磷胁迫响应的转录组分析[D].济南:山东大学,2009.
    [42] Ruffel S,Krouk G,Ristova D,et al.Nitrogen economics of root foraging:transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs.demand[J].Proceedings of the National Academy of Sciences,2011,108(45):18524-18529.
    [43] 王开,李文学.玉米耐受低磷胁迫的分子机制研究进展[J].生物技术通报,2016,32(10):52-57.
    [44] Lin W Y,Huang T K,Chiou T J.Nitrogen limitation adaptation,a target of microRNA827,mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis[J].The Plant cell,2013,25:4061-4074.
    [45] Liu T Y,Huang T K,Tseng C Y,et al.PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis[J].Plant Cell,2012,24(5):2168-2183.
    [46] Kiba T,Inaba J,Kudo T,et al.Repression of nitrogen-starvation responses by members of the Arabidopsis GARP-type transcription factor NIGT1/HRS1 subfamily[J].Plant Cell,2018,30:925-945.
    [47] Maeda Y,Konishi M,Kiba T,et al.A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis[J].Nature Communications,2018,9(1):1376.
    [48] 邢瑶,马兴华.氮素形态对植物生长影响的研究进展[J].中国农业科技导报,2015,17(2):109-117.
    [49] Zhou W,Lou Y,Ren L,et al.Application of controlled-release nitrogen fertilizer decreased methane emission in transgenic rice from a paddy soil[J].Water Air and Soil Pollution,2014,225(3):1897.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700