微润灌溉定额及微润带埋深对农田水盐动态及向日葵水分利用效率的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Moistube-Irrigation Quota and Buried Depth on Soil Water and Salt Dynamics of Farmland and Water Use Efficiency of Sunflower
  • 作者:贾腾月 ; 姬宝霖 ; 李仙岳 ; 田德龙 ; 张金丁
  • 英文作者:JIA Tengyue;JI Baolin;LI Xianyue;TIAN Delong;ZHANG Jinding;Water Conservancy and Civil Engineering College,Inner Mongolia Agriculture University;China's Scientific Research Institute in the Pastoral Areas of Water Conservancy;
  • 关键词:微润灌溉 ; 相对含盐积累量 ; 土壤水分 ; 向日葵产量 ; 水分利用效率(WUE)
  • 英文关键词:moistube irrigation;;relative salt accumulation;;soil moisture;;sunflower yield;;water use efficiency
  • 中文刊名:TRQS
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:内蒙古农业大学水利与土木建筑工程学院;水利部牧区水利科学研究所;
  • 出版日期:2019-06-14
  • 出版单位:水土保持学报
  • 年:2019
  • 期:v.33;No.162
  • 基金:国家自然科学基金项目(51409174,51469022,51669020);; 内蒙古科技计划项目(201602049)
  • 语种:中文;
  • 页:TRQS201903042
  • 页数:9
  • CN:03
  • ISSN:61-1362/TV
  • 分类号:285-293
摘要
为探明微润灌溉对盐渍化土壤水盐变化及向日葵产量的影响,以河套灌区中度盐渍化向日葵农田为研究对象,设置了2种微润带埋设深度分别是20 cm(T1~T4),10 cm (T5~T8),4种灌溉定额(充分灌溉:T1,T5;轻度缺水:T2,T6;中度缺水:T3,T7;重度缺水:T4,T8)共8个处理。研究不同微润带埋设深度与灌溉定额对土壤水分、盐分分布,向日葵产量以及水分利用效率(WUE)的影响。结果表明:微润带埋深相同,灌溉定额越大,土壤含水率越高,土壤盐分越低。微润带埋深是影响土壤水盐分布的重要因素。灌溉定额相同,与微润带埋深为10 cm的处理相比,埋深为20 cm的处理在20—30 cm内土壤含水率更大,在10—60 cm内土壤含水率变异系数较小,且含盐量显著降低。微润带埋深20 cm条件下,充分灌溉有利于抑制向日葵根区土壤盐分累积。在2015年向日葵成熟收获后,T1处理0—60 cm土层内土壤相对积盐率为9.3%,比T2,T5处理降低53.3%,45.9%。而2016年向日葵成熟收获后,0—60 cm土层内土壤呈现脱盐现象且相对脱盐量随着灌溉定额减少而减少,随着埋深增加而增大。在相同埋深下,产量随着灌溉水量的增多呈逐渐递增的趋势;在相同灌溉定额下,微润带埋深为20 cm与10 cm各对应处理(T1与T5对应,依次类推)产量相比具有增加趋势,且差异显著。综合来看,埋深为20 cm时,充分灌溉的处理,在0—60 cm土层内土壤积盐率最小为9.3%,并且作物产量最高,WUE较高。推荐河套地区种植向日葵农田的微润带布置埋深为20 cm,进行充分灌水的应用模式,并进行秋浇将土壤表层盐分淋洗。该研究为微润灌溉在盐渍化地区的应用提供参考。
        Moderately salinized sunflower field in Hetao Irrigation District were used to explore the effects of moistube-irrigation on the changes of soil water and salt distribution and crop yield to support the generalization and application of moistube-irrigation technology. Two soil buried depths(10, 20 cm) and four irrigation quotas(Full irrigation: T1, T5, mild water shortage: T2, T6, moderate water shortage: T3, T7, severe water shortage: T4, T8) were set up to study the changes of soil water and salt distribution and sunflower yield and water use efficiency(WUE). The results showed that in the same depth of moistube, as the irrigation quotas increased, the soil moisture was the higher and soil salinity was lower. The buried depth of moistube was an important factor affecting the distribution of soil water and salt. In the same irrigation quota, compared with the buried depth of 20 cm, The soil moisture contents with the buried depth of 10 cm was larger in 20—30 cm, the coefficient of variation of soil water content was less in 10—60 cm, and the salt content was significantly reduced. Under the condition of full irrigation and moistube buried depth of 20 cm, it was beneficial to inhibit the accumulation of soil salt in the root zone of sunflower. After the ripening of sunflower in 2015, the average relative salt accumulation rate of 0—60 cm treated by T1 was 9.3%, which was respectively lower than those of T2 and T5 treatment by 53.3% and 45.9% respectively. After the ripening of sunflower in 2016, the soil of 0—60 cm showed desalting and the amount of desalination decreased with the decrease of irrigation quotas, and increased with the increase of buried depth. At the same burial depth, the yield gradually increased with the increase of irrigation water volume. Under the same irrigation quota, moistube with buried depth of 20 cm had an increasing trend and the difference was significant compared with the depth of 10 cm. In summary, in the case of sufficient irrigation and moistube buried depth of 20 cm, the soil salt accumulation rate of 0—60 cm was 9.3%, and the crop yield was the highest, and the WUE was higher. It is recommended that the moistube buried depth of 20 cm and sufficient irrigation should be carried out in the sunflower field, and the soil should be leached by autumn flooding to decrease salt of surface layer in the Hetao area. This study provides a reference for the application of moistube-irrigation in moderately salinized areas.
引文
[1]张子卓,张珂萌,牛文全,等.微润带埋深对温室番茄生长和土壤水分动态的影响[J].干旱地区农业研究,2015,33(2):122-129.
    [2]薛万来,牛文全,张子卓,等.微润灌溉对日光温室番茄生长及水分利用效率的影响[J].干旱地区农业研究,2013,31(6):61-66.
    [3]Li J P,Xu X X,Lin G,et al.Micro-irrigation improves grain yield and resource use efficiency by co-locatingthe roots and N-fertilizer distribution of winter wheat in the North China Plain[J].Science of the Total Environment,2018,643(25):367-377.
    [4]田德龙,郑和祥,李熙婷.微润灌溉对向日葵生长的影响研究[J].节水灌溉,2016(9):94-97,101.
    [5]弋鹏飞.膜下滴灌棉田土壤水盐运移规律试验研究[D].乌鲁木齐:新疆农业大学,2011.
    [6]史丽艳,牛文全,张俊.灌水方式对轻度盐化土壤玉米生长及土壤水分的影响[J].干旱地区农业研究,2013,31(2):152-156,175.
    [7]牛文全,张俊,张琳琳,等.埋深与压力对微润灌湿润体水分运移的影响[J].农业机械学报,2013,44(12):128-134.
    [8]Meshram D T,Gorantiwar S D,Singh N V,et al.Response of micro-irrigation systems on growth,yield andWUE of Pomegranate(Punica granatum L.)in semiarid regions of India[J].Scientia Horticulturae,2019,246(4):686-692.
    [9]吕殿青,王全九,王文焰,等.膜下滴灌水盐运移影响因素研究[J].土壤学报,2002,39(6):794-801.
    [10]Karlberg L,Rockstr9m J,Annandale J G,et al.Low-cost drip irrigation:A suitable technology for southern Africa:An example with tomatoes using saline irrigation water[J].Agricultural Water Management,2007,89(1/2):59-70.
    [11]李朝阳,王兴鹏,杨玉辉,等.不同水头压力的微润灌对土壤水盐运移的影响[J].灌溉排水学报,2017,36(6):22-26.
    [12]张子卓,牛文全,许健,等.膜下微润带埋深对温室番茄土壤水盐运移的影响[J].中国生态农业学报,2015,23(9):1112-1121.
    [13]Patel N,Rajput T B S.Effect of drip tape placement depth and irrigation level on yield of potato[J].Agricultural Water Management,2006,88(1):209-223.
    [14]梁建财,史海滨,李瑞平,等.不同覆盖方式对中度盐渍土壤的改良增产效应研究[J].中国生态农业学报,2015,23(4):416-424.
    [15]王淑红,张玉龙,虞娜,等.保护地渗灌管的埋深对土壤水盐动态及番茄生长的影响[J].中国农业科学,2003,36(12):1508-1514.
    [16]牛文全,吕望,古君,等.微润管埋深与间距对日光温室番茄土壤水盐运移的影响[J].农业工程学报,2017,33(19):131-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700