高阶高斯滤波和Radon变换结合的缸体特征提取
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cylinder Surface Feature Extraction Combining High-Order Gaussian Filter with Radon Transform
  • 作者:戴嘉程 ; 曾文涵 ; 杨文军 ; 卢文龙 ; 刘晓军 ; 秦红玲
  • 英文作者:DAI Jiacheng;ZENG Wenhan;YANG Wenjun;LU Wenlong;LIU Xiaojun;QIN Hongling;State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology;The EPSRC Future Metrology Hub, University of Huddersfield,Huddersfield, HD1 3DH;HUST-Shen Zhen Research Institute;Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University;
  • 关键词:高阶高斯回归滤波 ; Radon变换 ; 气缸表面形貌 ; 三维表面轮廓
  • 英文关键词:high-order Gaussian regression filter;;Radon transform;;cylinder surface topography;;3D surface contour
  • 中文刊名:XAJT
  • 英文刊名:Journal of Xi'an Jiaotong University
  • 机构:华中科技大学数字制造装备与技术国家重点实验室;英国哈德斯菲尔德大学EPSRC国家未来计量联盟HD13DH;深圳华中科技大学研究院;三峡大学水电机械设备设计与维护湖北省重点实验室;
  • 出版日期:2019-01-03 09:33
  • 出版单位:西安交通大学学报
  • 年:2019
  • 期:v.53
  • 基金:国家自然科学基金资助项目(51675167);; 深圳市科技创新基础研究资助项目(JCYJ2017030717134710)
  • 语种:中文;
  • 页:XAJT201904021
  • 页数:8
  • CN:04
  • ISSN:61-1069/T
  • 分类号:142-148+155
摘要
针对缸体表面特征以沟槽为主、方向性显著的特点,提出了使用高阶高斯回归滤波预处理与Radon变换相结合对表面的沟槽特征进行提取的方法。高阶高斯回归滤波抑制了边界效应,使得表面数据能被全部用于分析,提高了数据的使用率,同时减轻了异常值对滤波结果的影响,防止了沟槽形状带来的极值对滤波中线提取的干扰。在Radon变换过程中,为了防止沟槽密集处由于特征方向性减弱造成的特征提取困难,将沟槽特征整体的提取简化为对沟槽中心线的提取。考虑到沟槽底部极小值点分布与中心线之间的强相关性,使用深沟槽底部极小值点拟合确定中心线的位置。浅沟槽与轻微划痕也会留下极小值点,对深沟槽极小值点的提取造成干扰,因此引入深度阈值将两者区分。对样本分析后,得到沟槽的主要角度为19.5°、91.1°、165.6°。表面沟槽整体缺陷率为35.95%,大于单条沟槽缺陷率。与从二维轮廓线提取的表面特征结果对比表明,采用该方法所提取的缸体三维表面特征不仅包含了更多的特征信息,而且特征提取结果对表面局部的极值具有更强的稳健性。
        Aiming at multiple-groove-like features with obvious orientation on cylinder bore surface, a new method of groove feature extraction by combining high-order Gauss regression filter pre-processing with Radon transform is proposed. The high-order robust Gauss regression filter suppresses the boundary effect so the whole measured surface data can be applied to the analysis, and the interference of extremum caused by groove features on filtering mean surface extraction is prevented. In the Radon transform process, the whole extraction of groove features is simplified to the extraction of the centre line of grooves to avoid the difficulty of feature extraction caused by the weakening of feature orientation in dense grooves. Considering the strong correlation between the distribution of the minimum points at bottom of groove and the centre line, the centre line location is determined by fitting the minimum points at the bottom of the deep groove. Shallow grooves and slight scratches also leave minimal points to interfere with the extraction of minimal points in deep grooves, so the depth threshold is introduced to distinguish the interference. Experimental results show that the main angles of grooves are 19.5°, 91.1° and 165.6°; the overall defect rate of the surface groove reaches 35.95%, larger than that of a single groove. Compared with the surface feature extracted from the two-dimensional contour line, the three-dimensional surface feature extracted with this method contains more feature information and has stronger robustness to the local extremum of the surface.
引文
[1]PEHNELT S,DOLLINGER P,OSTEN W,等.气缸工作表面形状的评定[J].国外内燃机,2014(4):59-62.
    [2]石言广,王永芳,刘必峰.内燃机气缸套内孔研珩网纹的研究[J].内燃机与配件,2015(3):36-37.SHI Yanguang,WANG Yongfang,LIU Bifeng.On the internal combustion engine cylinder liner bore honing research textured[J].Internal Combustion Engine&Parts,2015(3):36-37.
    [3]李伯奎.基于三维表面气缸套内孔平台珩磨网纹的技术要求与检测[J].润滑与密封,2008,33(9):51-54.LI Bokui.Specification and inspection for cylinder liners plateau honing cross hatch based on three-dimensional surface[J].Lubrication Engineering,2008,33(9):51-54.
    [4]BEYERER J,PUENTE LEN F.Detection of defects in groove textures of honed surfaces[J].International Journal of Machine Tools&Manufacture,1997,37(3):371-389.
    [5]DIMKOVSKI Z,ANDERBERG C,BENGTGRANR,et al.Quantification of the cold worked material inside the deep honing grooves on cylinder liner surfaces and its effect on wear[J].Wear,2009,267(12):2235-2242.
    [6]BENGT-GRAN R,LARS B,DIMKOVSKI Z.On variation of surface topography and robust product performance[J].Instrumentation,2014,1(1):1-7.
    [7]ANDERBERG C,CABANETTES F,DIMKOVSKIZ,et al.Cyliners liners and consequences of improved honing[EB/OL].[2018-09-19].http:∥www.divaportal.se/smash/get/diva2:239106/FULLTEXT02.pdf.
    [8]DIMKOVSKI Z,ANDERBERG C,OHLSSON R,et al.Characterisation of worn cylinder liner surfaces by segmentation of honing and wear scratches[J].Wear,2011,271:548-552.
    [9]ZENG W,JIANG X,SCOTT P J.Fast algorithm of the robust Gaussian regression filter for areal surface analysis[J].Meas Sci Technol,2010,21:9-17.
    [10]MURALIKRISHAN B,RAJA J.Computational surface and roundness metrology[M].Berlin,Germany:Springer,2008:67-92.
    [11]SAVITZKY A,GOLAY M J E.Smoothing and differentiation of data by simplified least squares procedures[J].Analytic Chemistry,1964,36(8):1637-1639.
    [12]张梦倩.离散曲面三维形状表征及滤波方法研究[D].哈尔滨:哈尔滨工业大学,2016:43-45.
    [13]ANDERSON R.现代稳健回归方法[M].李丁,译.上海:格致出版社,2011:30-44.
    [14]温江涛,王玉田,孙洁娣.基于稳健滤波技术的测量异常值处理的研究[J].传感技术学报,2002,15(4):374-376.WEN Jiangtao,WANG Yutian,SUN Jiedi.The study of processing to outlier in measured data based on robust filtering[J].Chinese Journal of Sensors and Actuators,2002,15(4):374-376.
    [15]许景波,聂家立,王升,等.基于粗大误差估计的表面测量稳健滤波方法研究[J].计量学报,2017,38(4):391-395.XU Jingbo,NIE Jiali,WANG Sheng,et al.A robust Gaussian filtering method in surface measurement based on gross error estimation[J].Acta Metrologica Sinica,2017,38(4):391-395.
    [16]张斌.高效稳健的自适应滤波算法研究[D].西安:西安电子科技大学,2010:5-10.
    [17]朴伟英,袁怡宝,孙涛,等.表面计量中高斯滤波器的一种高精度实现方法[J].纳米技术与精密工程,2013,11:546-550.PIAO Weiying,YUAN Yibao,SUN Tao,et al.An accurate algorithm of Gaussian filter for surface metrology[J].Nanotechnology and Precision Engineering,2013,11:546-550.
    [18]何萌萌.基于Radon变换的直线检测技术[D].哈尔滨:哈尔滨工业大学,2015:9-16.
    [19]赵军.视觉显著性直线的检测算法研究[D].武汉:华中师范大学,2015:29-38.
    [20]中华人民共和国工业和信息化部.JBT 5082.7-2011内燃机气缸套第7部分:平台珩磨网纹技术规范及检测方法[S].北京:中国标准出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700