小麦TaSPL17基因在苗期对不同激素处理的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of TaSPL17 Gene to Different Hormone Treatments in Wheat Seedlings
  • 作者:高新梅 ; 张金民 ; 崔桂宾 ; 孙风丽 ; 张超 ; 刘曙东 ; 奚亚军
  • 英文作者:GAO Xinmei;ZHANG Jinmin;CUI Guibin;SUN Fengli;ZHANG Chao;LIU Shudong;XI Yajun;College of Agronomy,Northwest A&F University;Shangqiu A&F Academy;
  • 关键词:小麦 ; TaSPL17 ; 独脚金内酯 ; 生长素 ; 细胞分裂素
  • 英文关键词:Wheat;;TaSPL17;;Strigolactone;;Auxin;;Cytokinin
  • 中文刊名:MLZW
  • 英文刊名:Journal of Triticeae Crops
  • 机构:西北农林科技大学农学院;商丘市农林科学院;
  • 出版日期:2018-12-28 16:24
  • 出版单位:麦类作物学报
  • 年:2019
  • 期:v.39;No.255
  • 基金:陕西省农业科技创新与攻关项目(2013K02-01-02);; 陕西省种质资源保护利用项目(20171010000004);; 资源高效育种新材料创制与新品种选育项目(2017YFD0100706)
  • 语种:中文;
  • 页:MLZW201901005
  • 页数:6
  • CN:01
  • ISSN:61-1359/S
  • 分类号:33-38
摘要
小麦TaSPL17基因在小麦株型调控中具有重要作用。为发掘TaSPL17基因在小麦育种中的应用价值,本研究采用不同浓度的独脚金内酯人工合成类似物GR24、生长素IAA和细胞分裂素6-BA分别处理三叶期的小麦,通过qRT-PCR技术检测小麦苗期根部和茎基部TaSPL17基因相对表达量的变化。结果发现,外源施加GR24、IAA和6-BA能显著下调小麦幼苗根部和茎基部TaSPL17基因的表达,并且在一定范围内施加的激素浓度越高,对TaSPL17基因表达的抑制作用越明显。以上结果表明,小麦株型相关基因TaSPL17的表达量可以被独脚金内酯、生长素和细胞分裂素调节,该基因可能通过参与这三种激素的信号途径发挥其在株型调控中的作用。
        TaSPL17 plays an important role in the regulation of wheat plant architecture.In order to explore the molecular mechanism of TaSPL17 regulating wheat growth and development,and study the application value of TaSPL17 gene in wheat breeding,different concentrations of strigolactone synthetic analogues GR24,auxin IAA and cytokinin 6-BA were used to treat the three-leaf stage wheat,and the qRT-PCR technique was used to detect the relative expression level of TaSPL17 in wheat root and stem base in this study.It was found that the application of GR24,IAA and 6-BA significantly inhibited the expression of TaSPL17 gene in the root and stem base of wheat seedlings,and the inhibition of TaSPL17 was increased with the improvement of hormone concentrations.The above results showed that TaSPL17 gene related to wheat architecture can be regulated by strigolactone,auxin and cytokinin,and this gene could play its role in plant architecture regulation through participating in these three hormone signaling pathways.
引文
[1]WANG H,WANG H Y.The miR156/SPL module,a regulatory hub and versatile toolbox,gears up crops for enhanced agronomic traits[J].Molecular Plant,2015,8(5):677.
    [2]JIAO Y Q,WANG Y H,XUE D W,et al.Regulation of OsSPL14 by OsmiR156defines ideal plant architecture in rice[J].Nature Genetics,2010,42(6):544.
    [3]MIURA K,IKEDA M,MATSUBARA A,et al.OsSPL14promotes panicle branching and higher grain productivity in rice[J].Nature Genetics,2010,42(6):545.
    [4]WANG L,SUN S Y,JIN J Y,et al.Coordinated regulation of vegetative and reproductive branching in rice[J].PNAS,2015,112(50):15505.
    [5]WANG S K,WU K,YUAN Q B,et al.Control of grain size,shape and quality by OsSPL16 in rice[J].Nature Genetics,2012,44(8):950.
    [6]SI L Z,CHEN J Y,HUANG X H,et al.OsSPL13 controls grain size in cultivated rice[J].Nature Genetics,2016,48(4):450.
    [7]WANG J,YU H,XIONG G S,et al.Tissue-specific ubiquitination by IPA1INTERACTING PROTEIN1modulates IPA1protein levels to regulate plantarchitecture in rice[J].The Plant Cell,2017,29(4):11.
    [8]LU Z F,YU H,XIONG G S,et al.Genome-wide binding analysis of the transcription activator ideal plant architecture1reveals a complex network regulating rice plant architecture[J].The Plant Cell,2013,25(10):3746.
    [9]SONG X G,LU Z F,YU H,et al.IPA1functions as a downstream transcription factor repressed by D53in strigolactone signaling in rice[J].Cell Research,2017,27(9):1130.
    [10]ZHANG B,LIU X,ZHAO G Y,et al.Molecular characterization and expression analysis of Triticum aestivum squamosa-promoter binding protein-box genes involved in ear development[J].Journal of Integrative Plant Biology,2014,56(6):571.
    [11]ZHANG B,XU W N,LIU X,et al.Functional conservation and divergence among homoeologs of TaSPL20 and TaSPL21,two SBP-box genes governing yield-related traits in hexaploid wheat[J].Plant Physiology,2017,174(2):1188.
    [12]刘霞,张斌,毛新国,等.小麦tae-MIR156前体基因的克隆及其靶基因TaSPL17多态性分析[J].遗传,2014,36(6):596.LIU X,ZHANG B,MAO X G,et al.Cloning of tae-MIR156precursor gene and sequence polymorphisms of tae-miR156targeted TaSPL17[J].Hereditas,2014,36(6):596.
    [13]LIU J,CHENG X L,LIU P,et al.miR156-targeted SBP-box transcription factors interact with DWARF53to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat[J].Plant Physiology,2017,174(3):1931.
    [14]WATERS M T,GUTJAHR C,BENNETT T,et al.Strigolactone signaling and evolution[J].Annual Review of Plant Biology,2017,68:300.
    [15]任怡怡,戴绍军,刘炜.生长素的运输及其在信号转导及植物发育中的作用[J].生物技术通报,2012(3):10.REN Y Y,DAI S J,LIU W.Auxin transport and its roles in signal transduction and plant development[J].Biotechnology Bulletin,2012(3):10.
    [16]邓岩,王兴春,杨淑华,等.细胞分裂素:代谢、信号转导、交叉反应与农艺性状改良[J].植物学通报,2006,23(5):487.DENG Y,WANG X C,YANG S H,et al.New insights into cytokinins:Metabolism,signal transduction,cross talks and potentials in agricultural applications[J].Chinese Bulletin of Botany,2006,23(5):487.
    [17]BALUKA F.Signaling and communication in plants[M].Springer-Verlag Berlin Heidelberg,2013:195.
    [18]高雨,李颖,谢寅峰,等.独脚金内酯调控植物侧枝发育的分子机制及其与生长素交互作用的研究进展[J].植物资源与环境学报,2013,22(4):102.GAO Y,LI Y,XIE Y F,et al.Research progress on molecular mechanism of strigolactones in regulating of plant lateral shoot development and its interaction with auxin[J].Journal of Plant Resources and Environment,2013,22(4):102.
    [19]张铁怀,徐开杰,刘曙东,等.小麦TaSPL17基因的克隆、组织特异性表达及原核表达分析[J].西北农业学报,2015,24(7):40.ZHANG T H,XU K J,LIU S D,et al.Cloning,tissue-specific expression and prokaryotic expression analysis of TaSPL17 gene in wheat(Triticum aestivum)[J].Acta AgriculturaeBoreali-occidentalisSinica,2013,22(4):102.
    [20]KERR S C,BEVERIDGE CA.IPA1:A direct target of SL signaling[J].Cell Research,2017,27(10):1191.
    [21]TAIZ L,ZEIGER E.Plant physiology(Fifth Edition)[M].Sinauer Associates,2010:504.
    [22]BHALERAO R P,EKLOF J,LJUNG K,et al.Shoot-derived auxin is essential for early lateral rootemergence in Arabidopsis seedlings[J].The Plant Journal,2002,29(3):327.
    [23]王金祥,严小龙,潘瑞炽.不定根形成与植物激素的关系[J].植物生理学通讯,2005,41(2):135.WANG J X,YAN X L,PAN J Z.Relationship between adventitious root formation and plant hormones[J].Plant Physiology Communications,2005,41(2):135.
    [24]GAO S P,FANG J,XU F,et al.CYTOKININ OXIDASE/DEHYDROGENASE4integrates cytokinin and auxin signaling to control rice crown root formation[J].Plant Physiology,2014,165(3):1035.
    [25]RUYTER-SPIRA C,KOHLEN W,CHARNIKHOVA T,et al.Physiological effects of the synthetic strigolactone analog GR24on root system architecture in Arabidopsis:Another belowground role for strigolactones[J].Plant Physiology,2011,155(2):729.
    [26]KAPULNIK Y,DELAUX P M,RESNICK N,et al.Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis[J].Planta,2011,233(1):213.
    [27]YU N,NIU Q W,NG K H,et al.The role of miR156/SPLs modules in Arabidopsis lateral root development[J].The Plant Journal,2015,83(4):682.
    [28]AGUILAR-MARTINEZ J A,POZA-CARRION C,CUBAS P.Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J].The Plant Cell,2007,19(2):468.
    [29]DUN E A,DE A S G,RAMEAU C,et al.Antagonistic action of strigolactone and cytokinin in bud outgrowth control[J].Plant Physiology,2012,158(1):487.
    [30]TANAKA M,TAKEI K,KOJIMA M,et al.Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance[J].The Plant Journal,2006,45(6):1033.
    [31]BREWER P B,DUN E A,FERGUSON B J,et al.Strigolactone acts downstream of auxin toregulate bud outgrowth in Peaand Arabidopsis[J].Plant Physiology,2009,150(1):482.
    [32]KEBROM T H,SPIELMEYER W,FINNEGAN E J.Grasses provide new insights into regulation of shoot branching[J].Trends in Plant Science,2013,18(1):44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700