用户名: 密码: 验证码:
ⅠB和ⅡB族金属催化氢胺化反应的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress in catalytic hydroamination of ⅠB and ⅡB metal catalysts
  • 作者:刘沛 ; 谷献模 ; 孔鹏 ; 李忠 ; 郑占丰
  • 英文作者:LIU Pei;GU Xianmo;KONG Peng;LI Zhong;ZHENG Zhanfeng;Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology;State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences;
  • 关键词:ⅠB族金属 ; ⅡB族金属 ; 催化 ; 活化 ; 氢胺化反应
  • 英文关键词:ⅠB metal;;ⅡB metal;;catalysis;;activation;;hydroamination
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:太原理工大学煤科学与技术教育部和山西省重点实验室;中国科学院山西煤炭化学研究所煤转化国家重点实验室;
  • 出版日期:2019-04-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.331
  • 基金:国家自然科学基金(51401233,21503258)
  • 语种:中文;
  • 页:HGJZ201904015
  • 页数:9
  • CN:04
  • ISSN:11-1954/TQ
  • 分类号:141-149
摘要
氢胺化反应是将氮氢键直接加成到碳碳不饱和键上的原子经济性反应,是一种合成胺类化合物的重要路径,在合成含氮化合物方面具有重要意义。本文首先介绍了氢胺化反应的机理,从活化胺类和活化不饱和烃类两个氢胺化反应机理的视角,详细阐述了ⅠB族中的Au、Ag、Cu和ⅡB族中的Zn 4种金属在氢胺化反应过程中活化底物的方式,并指出了ⅠB和ⅡB两族金属在氢胺化反应的热催化体系中存在的优缺点,在均相体系中反应温度较低,但操作步骤繁琐,催化剂不能循环利用,而在多相体系中可以实现催化剂的循环利用,但又面临着反应温度高的问题,因此开发温和条件下高效绿色的催化体系显得至关重要。此外,对光催化技术在氢胺化反应中的应用前景进行了展望,而非贵金属利用可见光在温和条件下实现高效催化氢胺化反应是未来的一个重要发展方向。
        Hydroamination is an important and atom-economical route for the synthesis of amines through the direct addition of N—H bond to C—C multiple bond. This process is of great significance for the preparation of nitrogen-containing compounds. In this review,the mechanism of hydroamination was first presented. Four kinds of metal catalysts i.e, Au,Ag,Cu and Zn,which were typical representatives of group ⅠB and ⅡB,were discussed in detail in terms of their activation modes in the hydroamination of amines and unsaturated hydrocarbons. The advantages and disadvantages of these metal catalysts in the thermocatalytic system of hydroamination were analyzed. In homogeneous systems, the reaction temperature is low, but the operation were very complicated and the catalyst cannot be recycled, while the recycle of catalyst can be realized in heterogeneous systems, which in turn face the problem of high reaction temperature. Therefore, it is very important to develop high efficient green catalytic system operated under mild conditions. In addition, the potential of photocatalytic technology in hydroamination is prospected, and it is an important development direction for non-precious metals in the preparation of high efficient catalytic hydroamination under mild conditions by using visible light in the future.
引文
[1] BYTSCHKOV I, DOYE S. Microwave-assisted catalytic intermolecular hydroamination of alkynes[J]. European Journal of Organic Chemistry, 2001,23:4411-4418.
    [2] PEARLMAN D S. Antihistamines:pharmacology and clinical use[J].Drugs, 1976, 12(4):258-273.
    [3] AGER D J, PRAKASH I, SCHAAD D R. 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis[J]. Chemical Reviews, 1996, 27(30):835-876.
    [4] VORBR?GGEN H, KROLIKIEWICZ K. Amination,Ⅲ.trimethylsilanol as leaving group,Ⅴ. silylation-amination of hydroxy N-heterocycles[J]. Chemische Berichte, 1984, 117(4):1523-1541.
    [5] BALARAMAN E, GNANAPRAKASAM B, SHIMON L J W, et al.Direct hydrogenation of amides to alcohols and amines under mild conditions[J]. Journal of the American Chemical Society, 2010, 132(47):16756-16758.
    [6] LORITSCH J A, VOGT R R. The addition of aryl amines to alkynes[J].Journal of the American Chemical Society, 1939, 61:1462-1463.
    [7] WALSH P J, BARANGER A M, BERGMAN R G. Stoichiometric and catalytic hydroamination of alkynes and allene by zirconium bisamides Cp2Zr(NHR)2[J]. Journal of the American Chemical Society, 1992, 114(5):1708-1719.
    [8] MCGRANE P L, JENSEN M, LIVINGHOUSE T. Intramolecular[2+2]cycloadditions of group-Ⅳmetal imido complexes-applications to the synthesis of dihydropyrrole and tetrahydropyridine derivatives[J].Journal of the American Chemical Society, 1992, 114(13):5459-5460.
    [9] LI Y W, MARKS T J. Organolanthanide-catalyzed intramolecular hydroamination/cyclizationof aminoalkynes[J]. Journalofthe American Chemical Society, 1996, 118(39):9295-9306.
    [10] HONG S W, MARKS T J. Highly stereoselective intramolecular hydroamination/cyclization of conjugated aminodienes catalyzed by organolanthanides[J]. Journal of the American Chemical Society, 2002,124(27):7886-7887.
    [11] HUANG L, ARNDT M, GOOBEN K, et al. Late transition metalcatalyzed hydroamination and hydroamidation[J]. Chemical Reviews,2015, 115(7):2596-2697.
    [12] POHLKI F, DOYE S. The catalytic hydroamination of alkynes[J].Chemical Society Reviews, 2003, 32(2):104-114.
    [13] SEVERIN R, DOYE S. The catalytic hydroamination of alkynes[J].Chemical Society Reviews, 2007, 36(9):1407-1420.
    [14] HAGGIN J. Chemists seek greater recognition for catalysis[J].Chemical&Engineering News, 1993, 71(22):23-27.
    [15] ANANIKOV V P, BELETSKAYA I P. Alkyne and alkene insertion into metal-heteroatom and metal-hydrogen bonds:the key stages of hydrofunctionalization process[J]. Hydrofunctionalization, 2013, 43:1-19.
    [16] M?LLER T E, PLEIER A K. Intramolecular hydroamination of alkynes catalysed by late transition metals[J]. Journal of the Chemical Society, Dalton Transactions, 1999(4):583-587.
    [17] SENGUPTA M, BAG A, DAS S, et al. Reaction and mechanistic studies of heterogeneous hydroamination over support-stabilized gold nanoparticles[J]. Chem. Cat. Chem., 2016, 8(19):3121-3130.
    [18] ZHAO J, ZHENG Z, BOTTLE S, et al. Highly efficient and selective photocatalytic hydroamination of alkynes by supported gold nanoparticles using visible light at ambient temperature[J]. Chemical Communications, 2013, 49(26):2676-2678.
    [19] MUNRO-LEIGHTON C, DELP S A, ALSOP N M, et al. Antimarkovnikov hydroamination and hydrothiolation of electron-deficient vinylarenescatalyzedbywell-definedmonomericcopper(Ⅰ)amidoand thiolate complexes[J]. Chemical Communications, 2008(1):111-113.
    [20] SEAYAD J, TILLACK A, HARTUNG C G, et al. Base-catalyzed hydroamination of olefins:an environmentally friendly route to amines[J]. Advanced Synthesis&Catalysis, 2002, 344(8):795-813.
    [21] OHMIYA H, MORIYA T, SAWAMURA M. Cu(Ⅰ)-catalyzed intramolecular hydroamination of unactivated alkenes bearing a primary or secondary amino group in alcoholic solvents[J]. Organic Letters, 2009, 11(10):2145-2147.
    [22] POUY M J, DELP S A, UDDIN J, et al. Intramolecular hydroalkoxylation and hydroamination of alkynes catalyzed by Cu(Ⅰ)complexes supported by N-heterocyclic carbene ligands[J]. ACS Catalysis, 2012, 2(10):2182-2193.
    [23] SENGUPTA M, DAS S, BORDOLOI A. Cu/Cu2O nanoparticle interface:rational designing of a heterogeneous catalyst system for selective hydroamination[J]. Molecular Catalysis, 2017, 440:57-65.
    [24] BIYIKAL M, L?HNWITZ K, MEYER N, et al.β-Diketiminate zinc complexes for the hydroamination of alkynes[J]. European Journal of Inorganic Chemistry, 2010(7):1070-1081.
    [25] SARISH S P, SCHAFFNER D, SUN Y, et al. Evidence for the formation of a metal alkyl intermediate in the zinc mediated intramolecular hydroamination[J]. Chemical Communications, 2013, 49(83):9672-9674.
    [26] EISENSTEIN O, HOFFMANN R. Activation of a coordinated olefin toward nucleophilic-attack[J]. Journal of the American Chemical Society, 1980, 102(19):6148-6149.
    [27] EISENSTEIN O, HOFFMANN R. Transition-metal complexed olefinshow their reactivity towards a nucleophile relates to their electronicstructure[J]. Journal of the American Chemical Society, 1981, 103(15):4308-4320.
    [28] CHENG X, KUOK HII K. Palladium-catalyzed addition of R2NH to double bonds. synthesis ofα-amino tetrahydrofuran and pyran rings[J].Tetrahedron, 2001, 57(25):5445-5450.
    [29] HUDRLIK P F, HUDRLIK A M. Enol acetates, enol ethers, and amines by mercuration of acetylenes[J]. Journal of Organic Chemistry,1973, 38(25):4254-4258.
    [30] DUAN H F, SENGUPTA S, PETERSEN J L, et al. Triazole-Au(Ⅰ)complexes:a new class of catalysts with improved thermal stability and reactivity for intermolecular alkyne hydroamination[J]. Journal of the American Chemical Society, 2009, 131(34):12100-12102.
    [31] PATIL N T, MUTYALA A K, LAKSHMI P G, et al. Au(Ⅰ)-catalyzed cascade reaction involving formal double hydroamination of alkynes bearing tethered carboxylic groups:an easy access to fused dihydrobenzimidazoles and tetrahydroquinazolines[J]. Journal of Organic Chemistry, 2010, 75(17):5963-5975.
    [32] PATIL N T, LAKSHMI P G V V, SINGH V. AuI-catalyzed direct hydroamination/hydroarylation and double hydroamination of terminal alkynes[J]. European Journal of Organic Chemistry, 2010, 24:4719-4731.
    [33] MIZUSHIMA E, HAYASHI T, TANAKA M. Au(Ⅰ)-catalyzed highly efficient intermolecular hydroamination of alkynes[J]. Organic Letters,2003, 5(18):3349-3352.
    [34] LIANG S, HAMMOND L, XU B, et al. Commercial supported gold nanoparticles catalyzed alkyne hydroamination and indole synthesis[J].Advanced Synthesis&Catalysis, 2016, 358(20):3313-3318.
    [35] KITAHARA H, SAKURAI H. Catalytic activity of gold nanoclusters in intramolecular hydroamination of alkenes and alkynes with toluenesulfonamide under aerobic and basic conditions[J]. Journal of Organometallic Chemistry, 2011, 696(1):442-449.
    [36] BISTONI G, BELANZONI P, BELPASSI L, et al.πActivation of alkynes in homogeneous and heterogeneous gold catalysis[J]. The Journal of Physical Chemistry A, 2016, 120(27):5239-5247.
    [37] BEEREN S R, DABB S L, MESSERLE B A. Intramolecular hydroamination catalysed by Ag complexes stabilised in situ by bidentate ligands[J]. Journal of Organometallic Chemistry, 2009, 694(2):309-312.
    [38] SU Y, LU M, DONG B, et al. Silver-catalyzed alkyne activation:the surprising ligand effect[J]. Advanced Synthesis&Catalysis, 2014, 356(4):692-696.
    [39] ZHANG X, ZHOU Y, WANG H, et al. Silver-catalyzed intramolecular hydroamination of alkynes in aqueous media:efficient and regioselective synthesis for fused benzimidazoles[J]. Green Chemistry,2011, 13(2):397-405.
    [40] CHONG Q, XIN X, WANG C, et al. Synthesis of polysubstituted pyrrolesvia Ag(Ⅰ)-mediatedconjugateadditionandcyclizationreaction of terminal alkynes with amines[J]. Tetrahedron, 2014, 70(2):490-494.
    [41] LIU Y, WU G, CUI Y. Ag/CNT-catalyzed hydroamination of activated alkynes with aromatic amines[J]. Applied Organometallic Chemistry,2013, 27(4):206-208.
    [42] PENZIEN J, HAEBNER C, JENTYS A, et al. Heterogeneous catalysts for hydroamination reactions:structure-activity relationship[J]. Journal of Catalysis, 2004, 221(2):302-312.
    [43] JOSEPH T, SHANBHAG G V, HALLIGUDI S B. Copper(Ⅱ)ionexchanged montmorillonite as catalyst for the direct addition of N—H bond to CC triple bond[J]. Journal of Molecular Catalysis A:Chemical,2005, 236(1/2):139-144.
    [44] SHANBHAG G, JOSEPH T, HALLIGUDI S. Copper(Ⅱ)ion exchanged AlSBA-15:a versatile catalyst for intermolecular hydroamination of terminal alkynes with aromatic amines[J]. Journal of Catalysis, 2007,250(2):274-282.
    [45] BóDIS J, MüLLER T E, LERCHER J A. Novel hydroamination reactions in a liquid-liquid two-phase catalytic system[J]. Green Chemistry, 2003, 5(2):227-231.
    [46] SHANBHAG G V, HALLIGUDI S B. Intermolecular hydroamination of alkynes catalyzed by zinc-exchanged montmorillonite clay[J]. Journal of Molecular Catalysis A:Chemical, 2004, 222(1/2):223-228.
    [47] PEETERS A, VALVEKENS P, AMELOOT R, et al. Zn-Co double metal cyanides as heterogeneous catalysts for hydroamination:a structure-activity relationship[J]. ACS Catalysis, 2013, 3(4):597-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700