铌酸钇里Bi~(3+)敏化Tm~(3+)的近红外量子剪裁发光的浓度效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Concentration Effect of Near-Infrared Quantum Cutting Luminescence of Tm~(3+) Ion Sensitized with Bi~(3+) Ion in YNbO_4 Phosphor
  • 作者:陈晓波 ; 李崧 ; 陈晓端 ; 王杰亮 ; 何丽珠 ; 王水锋 ; 邓志威 ; 程欢利 ; 高燕 ; 刘泉林
  • 英文作者:CHEN Xiao-bo;LI Song;CHEN Xiao-duan;WANG Jie-liang;HE Li-zhu;WANG Shui-feng;DENG Zhi-wei;CHENG Huan-li;GAO Yan;LIU Quan-lin;Applied Optics Beijing Area Major Laboratory and Department of Physics,Beijing Normal University;School of Materials Science and Engineering,State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing;Laboratory of Nanomaterials,National Center for Nanoscience and Technology of China;
  • 关键词:近红外量子剪裁发光 ; Tm~(3+) ; Bi~(3+) ; YNbO_4 ; 太阳能电池
  • 英文关键词:Near infrared quantum cutting luminescence;;Tm~(3+)ion;;Bi~(3+)ion;;YNbO_4;;Solar cell
  • 中文刊名:GUAN
  • 英文刊名:Spectroscopy and Spectral Analysis
  • 机构:北京师范大学应用光学北京重点实验室与物理系;北京科技大学材料科学与工程学院;国家纳米科学中心纳米材料实验室;
  • 出版日期:2016-07-15
  • 出版单位:光谱学与光谱分析
  • 年:2016
  • 期:v.36
  • 基金:国家自然科学基金课题项目(51472028);; 中央高校基本科研业务费专项资金重大项目(212-105560GK)资助
  • 语种:中文;
  • 页:GUAN201607011
  • 页数:6
  • CN:07
  • ISSN:11-2200/O4
  • 分类号:50-55
摘要
寻找新能源为全球目前面临着的重要课题,其中最理想的新能源为太阳能。近红外量子剪裁发光方法可以把硅或锗太阳能电池响应不够灵敏的大能量光子成倍的转换成为太阳能电池响应灵敏的小能量光子,能够解决光谱失配的问题,较大幅度的提高太阳能电池的效率。很有意义。报道了掺Tm~(3+)Bi~(3+)的铌酸钇磷光粉样品材料的近红外量子剪裁发光的浓度效应。通过测量激发谱与发光谱,发现Tm_(0.058)Bi_(0.010)Y_(0.932)NbO_4有很强的1 820.0 nm近红外量子剪裁发光;进一步的分析发现,它们是由交叉能量传递过程导致的多光子量子剪裁发光;还发现了有着很强的Bi~(3+)对Tm~(3+)的敏化近红外量子剪裁发光,302.0 nm光激发导致的Tm_(0.058)Bi_(0.010)Y_(0.932)NbO_4相对Tm_(0.058)Y_(0.995)NbO_4的1820.0 nm近红外量子剪裁发光的增强达到175.5倍。该结果对探索多光子近红外量子剪裁锗太阳能电池比较有意义。
        Searching for new energy source is one of the most important projects faced by the global,while the most ideal new energy source is solar cell.Near infrared quantum cutting luminescence method can doubly transfer large energy photon which is not sensitive to Si or Ge solar cell to small energy photon which is sensitive to Si or Ge solar cell.It can resolve the spectral mismatch problem and largely enhance solar cell efficiency.Therefore,it is significant.The concentration effect of near-infrared quantum cutting luminescence of Tm~(3+) Bi~(3+):YNbO_4 phosphor is reported in present manuscript.Through the measurement of excitation and emission spectra,it is found that the Tm_(0.058)Bi_(0.010)Y_(0.932)NbO_4 powder phosphor has intense 1 820.0 nm near-infrared quantum cutting luminescence.Further analysis finds they are multi-photon quantum cutting luminescence induced by the cross-energy transfer process.The population of ~1G_4 energy level may be directly transferred to lower energy level mainly through {~1G_4—~3H_4,~3H_6—~3H_5} and {~1G_4—~3H_5,~3H_6—~3 H_4} cross-energy transfer processes,i.e.one population of the ~1G_4energy level may effectively lead to two populations,which are positioned at the ~3H_4 and ~3H_5 energy levels,respectively,mainly through {~1G_4 —~3H_4,~3H_6 —~3 H_s} and {~1 G_4—~3 H_5,~3 H_6 —~3 H_4} cross-energy transfer processes.This may also effectively lead to three populations of the ~3F_4 energy level through {~3H_4—~3F_4,~3H_6—~3F_4} cross-energy transfer process from the ~3H_4 level and multi-phonon non-radiative relaxation from the ~3H_5 level,respectively.This results in the effective three-photon near-infrared quantum cutting of the ~3F_4—~3H_6 fluorescence of Tm~(3+) ion.It's also found that the sensitization action of Bi~(3+) ion to Tm~(3+) ion is very strong.The enhancement of the 1 820.0 nm near-infrared quantum cutting luminescence,of Tm_(0.058)Bi_(0.010)Y_(0.932)NbO_4 relative to Tm_(0.005)Y_(0.998)NBO_4,is about 175.5 times,when excited by the 302.0 nm light The present results are significant for the exploration of the next-generation multi-photon near-infrared quantum cutting germanium solar cell.
引文
[1]Vergeer P,Vlugt TJH,KoxMH F,et al.Phys.Rev.B,2005,71(1):014119.
    [2]TANG Jin-fa,ZHOU Bing-kun,LI Guang-lin,et al(唐晋发,周炳琨,李光临,等).Optics and Opto-Electronics(光学与光电子学),Beijing:Science Press(北京:科学出版社),1991.
    [3]Wegh R T,Donker H,Oskam K D,et al.Science,1999,283(54 02):663.
    [4]Richards BS.Sol.Energy Mater.Sol.Cells,2006,90(9):1189.
    [5]Zhu W J,Chen D Q,Lei L,et al.Nanoscale,2014,6(18):10500.
    [6]Chen D Q,Wang Y S,Hong M C.Nano Energy,2012,1(1):73.
    [7]Zhou J J,Teng Y,Liu X F,et al.Phys.Chem.Chem.Phys.,2010,12(41):13759.
    [8]Chen X B,Salamo G J,Yang G J,et al.Opt.Express,2013,21(18):A829.
    [9]YAO Wen-ting,CHEN Xiao-bo,CHENG Huan-li,et al(姚文婷,陈晓波,程欢利,等).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2015,35(2):325.
    [10]Trupke T,Green M A,Wurfel P.J.Appl.Phys.,2002,92(3):1668.
    [11]Zhou J J,Teng Y,Zhou S F,et al.International Journal of Applied Glass Science,2012,3(4):299.
    [12]Zhou J J,Teng Y,Liu X F,et al.Opt.Express,2010,18(21):21663.
    [13]Reisfeld R.Lasers and Excited States of Rare-Earth(Springer-Verlag),1977.
    [14]Wang Y Z,Yu D C,Lin H H,et al.J.Appl.Phys.,2013,114(20):203510.
    [15]van der Ende B M,Aarts L,Meijerink A.Phys.Chem.Chem.Phys.,2009,11(47):11081.
    [16]SONG Zeng-fu(宋增福).Principle and Application of Atomic Spectroscopy and Crystal Spectroscopy(原子光谱及晶体光谱原理与应用).Beijing:Science Press(北京:科学出版社),1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700