一种交联点可“滑动”的滑动轮凝胶的制备进展及思考
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Progress and Thinking on the Synthesis for Slide-Ring Gel including the Slidable Cross-Links
  • 作者:王文哲 ; 周英芳 ; 田尧 ; 张春权 ; 刘灿 ; 张鹏 ; 于海洋 ; 纪文娟 ; 陈世兰 ; 冯建
  • 英文作者:Wenzhe Wang;Yingfang Zhou;Yao Tian;Chunquan Zhang;Can Liu;Peng Zhang;Haiyang Yu;Wenjuan Ji;Shilan Chen;Jian Feng;School of Chemistry and Chemical Engineering,Chongqing University of Science & Technology;University of Aberdeen,King's College;D rilling & Production Technology Research Institute of Jidong Oilfield,China National Petroleum Corporation;
  • 关键词:滑动轮凝胶 ; 环糊精 ; 聚轮烷 ; 滑动效应
  • 英文关键词:slide-ring gel;;cyclodextrin;;polyrotaxane;;pulley effect
  • 中文刊名:GFZC
  • 英文刊名:Polymer Materials Science & Engineering
  • 机构:重庆科技学院化学化工学院;英国阿伯丁大学国王学院;中国石油冀东油田钻采工艺研究院;
  • 出版日期:2019-03-12 10:10
  • 出版单位:高分子材料科学与工程
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金资助项目(51504050,51774062);; 重庆市教委科学技术研究项目(KJ1601305);; 重庆科技学院校内科研基金(CK2016B07,CK2016Z20);重庆科技学院研究生科技创新计划(YKJCX1720509,YKJCX1820501);; 国家科技重大专项技术服务项目(33550000-17-FW2099-0049)
  • 语种:中文;
  • 页:GFZC201902030
  • 页数:8
  • CN:02
  • ISSN:51-1293/O6
  • 分类号:180-187
摘要
滑动轮凝胶具有"8"字型双环结构的交联点,这种交联点可以沿聚合物链发生滑移,受外力作用时,应力不仅集中在某一条链段,而可以通过滑轮效应分散到由双环结构交联的邻近链段。独特的结构赋予其普通化学或物理凝胶所不具备的性质。文中综述了这类凝胶的制备方法,通常首先制备出聚轮烷,再将聚轮烷上的环状分子桥连得到。后来又有先制备出聚轮烷,再将聚轮烷上的环糊精双键化改性作为一种通用型交联剂,将滑动效应引入更多的凝胶材料。还有先将环糊精引入双键,再将其制备成聚轮烷,目前已有成功实例。文中还介绍了其他多种将环糊精引入双键的改性实例,为制备具有滑动效应的聚轮烷交联剂提供一些思路。指出基于成本更低的β-环糊精制备的滑动轮凝胶也许更具备商业应用价值。
        The slide-ring gels were cross-linked by the molecule with double-ring structure like the Arabic numeral eight. The cross-links are movable along the polymer chains. Under external force, the tension can occur not only in a single polymer chain but also among adjacent polymers interlocked by cross-links shaped like eight. The pulley effect is expected to yield various unique properties of the slide-ring gel that are different from the traditional chemical and physical gel. The preparation methods of slide-ring gels were reviewed in the paper. In general, the polyrotaxane was prepared and then the ring molecules were bridged together by cross-linking agent. Another option is that the cyclodextrin was modified of introducing vinylic groups after the polyrotaxane was prepared. The kind of polyrotaxane can be seen a general cross-linking agent to introduce the pulley effect in other gels. The last method is the cyclodextrin was modified of introducing the double bonds firstly and then the polyrotaxane was prepared. This method has been example of success. The article also described other methods to introduce the double bonds into the cyclodextrins. The purpose is to provide some thoughts for preparation of polyrotaxane cross-linking agents with the pulley effect. The slide-ring gels based on the low-cost β-cyclodextrin may havemore commercial value compared with other cyclodextrins.
引文
[1] 冯剑, 黄永民, 刘洪来. 凝胶网络中溶剂性质的分子动力学模拟[J]. 化工学报, 2007, 58(5): 1073-1076. Feng J, Huang Y M, Liu H L. Molecular dynamics simulation of properties of solvent in gel network[J]. CIESC Journal, 2007, 58(5): 1073-1076.
    [2] 廖列文, 刘正堂, 黎新明, 等. AA/AMPS共聚物水凝胶的吸液性能[J]. 化工进展, 2008, 27(5): 729-732. Liao L W, Liu Z T, Li X M, et al. Study on absorbency of poly(AA-co-AMPS)hydrogels[J]. Chemical Industry and Engineering Progress, 2008, 27(5): 729-732.
    [3] 许定佳, 郑永付, 张松, 等. 调剖驱油技术中弱凝胶体系研究进展[J]. 化工进展, 2015, 34(5): 1323-1331. Xu D J, Zheng Y F, Zhang S, et al. Application progress of weak gel systems in oilfield profile control technology[J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1323-1331.
    [4] 严芳芳, 方波, 卢拥军, 等. 有机锆交联AM/DMAM/AMPS三元聚合物流变动力学[J]. 化工学报, 2014, 65(11): 4376-4382. Yan F F, Fang B, Lu Y J, et al. Rheokinetics of organic zirconium crosslinked AM/DMAM/AMPS terpolymer[J]. CIESC Journal, 2014, 65(11): 4376-4382.
    [5] 黄剑坤, 刘会娥, 黄扬帆, 等. 石墨烯气凝胶的制备及其对水中油分的吸附特性[J]. 化工学报, 2016, 67(12): 5048-5056. Huang J K, Liu H E, Huang Y F, et al. Facile synthesis of graphene aerogels as high-performance adsorbents for diesel removal[J]. CIESC Journal, 2016, 67(12): 5048-5056.
    [6] Cui Z F, Guan Y X, Yao S J. A temperature-sensitive hydrogel refolding system:preparation of poly(N-isopropyl acrylamide) and its application in lysozyme refolding[J]. Chin. J. Chem. Eng., 2004, 12: 556-560.
    [7] 冯纪璐, 齐军茹, 翁静宜, 等. 大豆7s球蛋白与葡聚糖共价键合纳米凝胶的制备与表征[J]. 化工学报, 2016, 67(9): 4020-4026. Feng J L, Qi J R, Weng J Y, et al. Preparation and characterization of soy β-conglycinin-dextran nanogels based on maillard reaction[J]. CIESC Journal, 2016, 67(9): 4020-4026.
    [8] 马志, 魏天俊, 冯光瑛, 等. AMPS聚合物的应用新进展[J]. 化工进展, 1998, 17(5): 29-30. Ma Z, Wei T J, Feng G Y, et al. The new progress in the applications of polymers of AMPS[J]. Chemical Industry and Engineering Progress, 1998, 17(5): 29-30.
    [9] 刘壮, 谢锐, 巨晓洁, 等. 具有快速响应特性的环境响应型智能水凝胶的研究进展[J]. 化工学报, 2016, 67(1): 202-208. Liu Z, Xie R, Ju X J, et al. Progress in stimuli-responsive smart hydrogels with rapid responsive characteristics[J]. CIESC Journal, 2016, 67(1): 202-208.
    [10] 刘博, 刘墨祥, 陈晓平. 用废弃煤矸石制备高比表面积的SiO2-Al2O3二元复合气凝胶[J]. 化工学报, 2017, 68(5): 2096-2104. Liu B, Liu M X, Chen X P. Preparation of SiO2-Al2O3 composite aerogel with high specific surface area by sol-gel method from coal gangue[J]. CIESC Journal, 2017, 68(5): 2096-2104.
    [11] Freedman D E, Riley S M, Jones Z L, et al. Biologically active filtration for fracturing flowback and produced water treatment[J]. J. Water Process Eng., 2017, 18: 29-40.
    [12] 唐致远, 李昌盛, 刘元刚. 聚合物镍氢电池的研究进展[J]. 化工进展, 2006, 25(11): 1251-1255. Tang Z Y, Li C S, Liu Y G. Research and development of polymer Ni/MH battery[J]. Chemical Industry and Engineering Progress, 2006, 25(11): 1251-1255.
    [13] 张云飞, 邓国华. 基于动态共价键的可自愈合聚合物凝胶[J]. 化工进展, 2012, 31(10): 2239-2244. Zhang Y F, Deng G H. Self-healing polymer gels based on dynamic covalent bonds[J]. Chemical Industry and Engineering Progress, 2012, 31(10): 2239-2244.
    [14] Zhang Y, Hu C, Xiang X, et al. Self-healable, tough and highly stretchable hydrophobic association/ionic dual physically cross-linked hydrogels[J]. RSC Adv., 2017, 7: 12063-12073.
    [15] 李美花, 谭玉梅, 邓国华. 滑动轮凝胶的制备及其结构研究进展[J]. 化工进展, 2014, 33(1): 110-116. Li M H, Tan Y M, Deng G H. Recent progress of synthesis of slide-ring gel and its structure characterization[J]. Chemical Industry and Engineering Progress, 2014, 33(1): 110-116.
    [16] Ito K. Slide-ring materials using topological supramolecular architecture[J]. Curr. Opin. Solid State Mater. Sci., 2010, 14: 28-34.
    [17] De G P G. Sliding gels[J]. Physica A, 1999, 271: 231-237.
    [18] Okumura Y, Ito K. The polyrotaxane gel: a topological gel by figure of-eight cross-links[J]. Adv. Mater., 2001, 13: 485-487.
    [19] 王兰兰, 赵燕. 高强度水凝胶的研究现状[J]. 化学推进剂与高分子材料, 2014, 12(2): 36-45. Wang L L, Zhao Y. Research situation of high strength hydrogel[J]. Chemical Propellants & Polymeric Materials, 2014, 12(2): 36-45.
    [20] Katsuno C, Konda A, Urayama K, et al. Pressure-responsive polymer membranes of slide-ring gels with movable cross-links[J]. Adv. Mater., 2013, 25: 4636-4640.
    [21] Mayumi K, Ito K. Structure and dynamics of polyrotaxane and slide-ring materials[J]. Polymer, 2010, 51: 959-967.
    [22] Sawada J, Aoki D, Uchida S, et al. Synthesis of vinylic macromolecular rotaxane cross-linkers endowing network polymers with toughness[J]. ACS Macro Lett., 2015, 4: 598-601.
    [23] Sugihara N, Tominaga Y, Shimomura T, et al. Ionic conductivity and mechanical properties of slide-ring gel swollen with electrolyte solution including lithium ions[J]. Electrochim. Acta, 2015, 169: 433-439.
    [24] Kato K, Yasuda T, Ito K. Viscoelastic properties of slide-ring gels reflecting sliding dynamics of partial chains and entropy of ring components[J]. Macromolecules, 2013, 46: 310-316.
    [25] Ito K. Slide-ring materials using topological supramolecular architecture[J]. Curr. Opin. Solid State Mater. Sci., 2010, 14: 28-34.
    [26] Harada A, Li J, Kamachi M. Synthesis of a tubular polymer from threaded cyclodextrins[J]. Nature, 1993, 364: 516-518.
    [27] Kato K, Inoue K, Kidowaki M, et al. Organic?inorganic hybrid slide-ring gels: polyrotaxanes consisting of poly(dimethylsiloxane)and γ-cyclodextrin and subsequent topological cross-linking[J]. Macromolecules, 2009, 42: 7129-7136.
    [28] Shinohara Y, Kayashima K, Okumura Y, et al. Small-angle x-ray scattering study of the pulley effect of slide-ring gels[J]. Macromolecules, 2006, 39: 7386-7391.
    [29] Mayumi K, Tezuka M, Bando A, et al. Mechanics of slide-ring gels: novel entropic elasticity of a topological network formed by ring and string[J]. Soft Matter, 2012, 8: 8179-8183.
    [30] Fleury G, Schlatter G, Brochon C, et al. Topological polymer networks with sliding cross-link points: the “sliding gels”. Relationship between their molecular structure and the viscoelastic as well as the swelling properties[J]. Macromolecules, 2007, 40: 535-543.
    [31] Moriyasu T, Sakamoto T, Sugihara N, et al. Ionic conduction of slide-ring gel swollen with ionic liquids[J]. Polymer, 2013, 54: 1490-1496.
    [32] You Q, Zhang P, Bai S X, et al. Supramolecular linear polymer formed by host-guest interactions of β-cyclodextrin dimers and polyacrylamide end-capped with adamantane[J]. Colloids Surf., A, 2015, 484: 130-135.
    [33] 赵三平, 徐卫林. 环糊精超分子水凝胶[J]. 化学进展, 2010, 22(5): 917-926. Zhao S P, Xu W L. Cyclodextrin-containing supramolecular hydrogels[J]. Chemical Industry and Engineering Progress, 2010, 22(5): 917-926.
    [34] Bin I A, Esaki K, Gotoh H, et al. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network[J]. Nat. Commun., 2014, 5: 5124-5124.
    [35] Koyanagi K, Takashima Y, Yamaguchi h, et al. Movable cross-linked polymeric materials from bulk polymerization of reactive polyrotaxane cross-linker with acrylate monomers[J]. Macromolecules, 2017, 50: 5695-5700.
    [36] 朱久进, 陈志, 张晓凤, 等. 环糊精功能化单体制备的研究现状[J]. 高分子通报, 2013(3): 25-29. Zhu J J, Chen Z, Zhang X F, et al. Review on synthesis of functional β-cyclodextrin monomer[J]. Chinese Polymer Bulletin, 2013(3): 25-29.
    [37] 黄怡, 范晓东. β-环糊精交联聚丙烯酸水凝胶的合成及其药物控制释放研究[J]. 高分子学报, 2006(3): 505-509. Huang Y, Fan X D. Study on hydrogels of β-cyclodextrin-crosslinked acrylic acid and their controlled drug release behavior[J]. Acta Polymerica Sinica, 2006(3): 505-509.
    [38] Harada A, Furue M, Nozakura S. Cyclodextrin-containing polymers. 1. preparation of polymers[J]. Macromolecules, 1976, 9: 701-704.
    [39] Pu W F, Yang Y, Wei B, et al. Potential of a β-cyclodextrin/Adamantane modified copolymer in enhancing oil recovery through host-guest interactions[J]. Ind. Eng. Chem. Res., 2016, 55: 8679-8689.
    [40] Liu X, Jiang W, Gou S, et al. Synthesis and evaluation of novel water-soluble copolymers based on acrylamide and modular β-cyclodextrin[J]. Carbohydr. Polym.,2013, 96: 47-56.
    [41] 黄怡, 杨振, 黄方千, 等. 新型环境敏感性β-环糊精水凝胶的合成及性能研究[J]. 功能材料, 2007, 38(5): 778-781. Huang Y, Yang Z, Huang F Q, et al. Preparation and characterization of a novel responsive hydrogel with β-cyclodextrin[J]. Journal of Functional Materials, 2007, 38(5): 778-781.
    [42] 田威, 范晓东, 姜敏, 等. 超支化聚(β-环糊精)的合成与表征[J]. 高等学校化学学报, 2008, 29(1): 193-196. Tian W, Fan X D, Jiang M, et al. Synthesis and characterization of hyperbranched poly(β-cyclodextrin)[J]. Chemical Journal of Chinese Universities, 2008, 29(1): 193-196.
    [43] 朱久进, 冉秀芝, 蒋炳英, 等. 新型双功能基环糊精单体制备[J]. 粮食与油脂, 2012, 25(1): 16-18. Zhu J J, Ran X Z, Jiang B Y, et al. Preparation of a novel β-cyclodextrin monomer with bifunctional groups[J]. Journal of Cereals & Oils, 2012, 25(1): 16-18.
    [44] 朱久进, 王远亮, 邱荣蓉, 等. 环糊精修饰聚乳酸基材料的亲水性及细胞相容性[J]. 功能材料, 2011, 42(1): 17-20. Zhu J J, Wang Y L, Qiu R R, et al. Hydrophilicity and cell compatibility studies on β-cyclodextrin modified poly(d, l-lactic acid)[J]. Journal of Functional Materials, 2011, 42(1): 17-20.
    [45] Li Y F, Ha Y M, Guo Q, et al. Synthesis of two β-cyclodextrin derivatives containing a vinyl group[J]. Carbohydr. Res.,2015, 404: 55-62.
    [46] 哈益明, 李咏富, 李庆鹏, 等. 顺丁烯二酸β-环糊精酯及其制备方法: 中国, 201410205821.9[P]. 2015-02-04.
    [47] 邓月娥, 龚文君, 李长恭, 等. 正交实验法研究MAH-β-CD衍生物的制备工艺[J]. 光谱实验室, 2009, 26(4): 761-764. Deng Y E, Gong W J, Li C G, et al. Optimization of the preparation technology for the derivatives of maleic of maleic anhydride-β-cyclodextrin with an orthogoal test[J]. Chinese Journal of Spectroscopy Laboratory, 2009, 26(4): 761-764.
    [48] 李英杰, 刘树仁, 高立娣, 等. MAH-β-CD的合成及其在毛细管电泳手性拆分中的应用[J]. 分析试验室, 2016(9): 1009-1011. Li Y J, Liu S R, Gao L D, et al. Preparation of maleic anhydride-β-cyclodextrin and its application of chiral separation by capillary electrophoresis[J]. Chinese Journal of Analysis Laboratory, 2016(9): 1009-1011.
    [49] 李咏富, 哈益明, 郭琴, 等. 顺丁烯二酸β-环糊精酯-n-乙烯基吡咯烷酮水溶性聚合物的合成及其吸附疏水性药物的研究[J]. 分析化学, 2017, 45(6): 874-882. Li Y F, Ha Y M, Guo Q, et al. Synthesis of β-cyclodextrin-N-vinyl-2-pyrrolidone water-solublecopolymer and its adsorption of hydrophobic drugs[J]. Chinese Journal of Analytical Chemistry, 2017, 45(6): 874-882.
    [50] Ni M, Cheng Y M, Shi D J, et al. Synthesis of poly(β-cyclodextrin-maleic anhydride)conjugated magnetic nanoparticles via raft polymerization for adsorption of organic compound[J]. Adv. Mater. Res., 2014: 955-959.
    [51] 单廷, 陈捷, 杨黎明, 等. 温度及pH敏感N-异丙基丙烯酰胺/β-环糊精水凝胶的辐射制备及其性能研究[J]. 辐射研究与辐射工艺学报, 2008, 26(2): 103-107. Shan T, Chen J, Yang L M, et al. Radiation preparation and characterization of temperature- and pH-sensitive hydrogel of N-isopropylacrylamide/β-cyclodextrin copolymer[J]. Journal of Radiation Research and Radiation Processing, 2008, 26(2): 103-107.
    [52] 刘郁杨, 范晓东, 张双存. 温度及pH敏感N-异丙基丙烯酰胺/β-环糊精水凝胶的合成与性能研究[J]. 高分子学报, 2002(5): 618-622. Liu Y Y, Fan X D, Zhang S C. Synthesis and properties of pH- and temperature-sensitive hydrogel containing N-isopropylacrylamide and β-cyclodextrin[J]. Acta Polymerica Sinica, 2002(5): 618-622.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700