非预混条件下的旋转爆轰燃烧室双波头演化过程数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical study on the two-wave transition process in rotating detonation combustor under separate injection condition
  • 作者:孟庆洋 ; 赵宁波 ; 郑洪涛 ; 刘潇 ; 祁磊 ; 金杉
  • 英文作者:MENG Qingyang;ZHAO Ningbo;ZHENG Hongtao;LIU Xiao;QI Lei;JIN Shan;College of Power and Energy Engineering,Harbin Engineering University;
  • 关键词:旋转爆轰 ; 非预混 ; 双波头 ; 对撞 ; 流场特性
  • 英文关键词:rotating detonation;;non-premixed;;two-waves;;collision;;flow field characteristic
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:哈尔滨工程大学动力与能源工程学院;
  • 出版日期:2019-01-14 17:14
  • 出版单位:航空动力学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金(51709059);; 黑龙江省自然科学基金(QC2017045);; 中央高校基本科研业务费专项资金(HEUCFJ170304,HEUCFP201719,HEUCFM180302)
  • 语种:中文;
  • 页:HKDI201901006
  • 页数:12
  • CN:01
  • ISSN:11-2297/V
  • 分类号:58-69
摘要
针对旋转爆轰燃烧室双波头演化过程中流场结构变化的问题,对非预混条件下的旋转爆轰燃烧室从起爆到形成稳定的双波头过程进行了数值模拟研究。研究结果表明,从起爆到形成稳定爆轰过程,燃烧室主要经历了起爆、爆轰波对撞和稳定爆轰三个阶段;在爆轰波对撞阶段,首次对撞是两个爆轰波间的对撞,由于对撞点处缺少新鲜混合气,从而在对撞结束后衰减为两个压力波。第二次对撞是两个压力波间的对撞,因为在第二次对撞点附近存在新鲜混合气来支撑爆轰波的持续传播,故对撞结束后产生了一个爆轰波和一个较弱的压力波;第二次对撞发生后,燃烧室内的压力波反射叠加并形成局部高压区,此高压区压缩气体使气体温度升高,高温气体引燃混合气后,最终发展成为第二个爆轰波;稳定阶段,两个爆轰波均能稳定自持传播,爆轰波峰面压力可达1.45MPa,波后温度为2 500K,爆轰波速度稳定在1 738m/s,产生的推力与比冲分别为79.76N和2312.15s;斜激波的存在使燃烧室出口平面流场产生了较大波动。
        In order to analyze the flow field structure of the two-waves evolution in the rotating detonation engine,a numerical simulation was conducted to investigate the formation process of two detonation waves under the separate injection condition.The results showed that from ignition to stable detonation,three phases including ignition phase,collision phase and stable phase,were included in the process.The first collision happened in two detonation waves,but two pressure waves were formed due to lack of fresh mixed gas around the collision zone.Then,the second collision happened in two pressure waves.As a result,the detonation wave and shock wave were formed due to the existence of mixed gas around the second collision zone.After the second collision,a high pressure zone was formed due to the pressure wave reflection and overlay,then the gas was compressed by the highpressure zone and the temperature of the gas was increased,the high temperature gas ignited the fresh mixed gas,finally,the second detonation wave was formed.When the detonation wave was stable,the wave pressure reached 1.45 MPa,the temperature was 2500 K,and the velocity was 1738 m/s.Besides,the thrust on the outlet was 79.76 Nand the specific impulse was 2 312.15 s.A significant fluctuation was created by oblique shock wave on the outlet.
引文
[1] LU F K,BRAUN E M.Rotating detonation wave propulsion:experimental challenges,modeling,and engine concepts[J].Journal of Propulsion and Power,2014,30(5):1125-1142.
    [2] BYKOVSKII F A,VEDERNIKOV E F.Continuous spin detonation in annular combustors[J].Combustion,Explosion,and Shock Waves,2005,41(4):449-459.
    [3] BYKOVSKII F A,ZHDAN S A,VEDERNIKOV E F.Continuous spin detonation[J].Journal of Propulsion and Power,2006,22(6):1204-1216.
    [4] THOMAS L M,SCHAUER F R,HOKE J L,et al.Buildup and operation of a rotating detonation engine[R].AIAA 2011-602,2011.
    [5] RUSSO R M,KING P I,SCHAUER F R,et al.Characterization of pressure rise across a continuous detonation engine[R].AIAA 2011-8046,2011.
    [6] SHANK J C,KING P I,KARNESKY J,et al.Development and testing of a modular rotating detonation engine[R].AIAA 2012-0120,2012.
    [7] THEUERKAUF S W,KING P I,SCHAUER F,et al.Thermal management for a modular rotating detonation engine[R].AIAA 2013-1176,2013.
    [8] LENTSH A,BEC R,SERRE L,et al.Overview of current french activities on PDRE and continuous detonation wave rocket engines[R].AIAA 2005-3232,2005.
    [9] LENAOUR B,FALEMPIN F,MIQUEL F.Recent experimental results obtained on continuous detonation wave engine[R].AIAA 2011-2235,2011.
    [10] KINDRACKI J.Experimental research on rotating detonation in liquid fuel-gaseous air mixtures[J].Aerospace Science&Technology,2015,43:445-453.
    [11] KINDRACKI J,WOLANSKI P,GUT Z.Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures[J].Shock Waves,2011,21(2):75-84.
    [12] SUCHOCKI J,YU S T,HOKE J,et al.Rotating detonation engine operation[R].AIAA 2012-0119,2012.
    [13] ANAND V,GEORGE A S,DRISCOLL R,et al.Characterization of instabilities in a rotating detonation combustor[J].International Journal of Hydrogen Energy,2015,40(46):16649-16659.
    [14] FROLOV S M,DUBROVSKII A V,IVANOV V S.Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer[J].Russian Journal of Physical Chemistry B,2013,7(1):35-43.
    [15] BYKOVSKII F A,ZHDAN S A,VEDERNIKOV E F.Continuous spin detonation of fuel-air mixtures[J].Combustion,Explosion,and Shock Waves,2006,42(4):463-471.
    [16] DRISCOLL R,GEORGE A T,ANAND V,et al.Numerical investigation of inlet injection in a rotating detonation engine[R].AIAA 2015-0879,2015.
    [17] DRISCOLL R,AGHASI P,GEORGE A T,et al.Three-dimensional numerical investigation of reactant injection variation in a H2/air rotating detonation engine[J].International Journal of Hydrogen Energy,2016,41(9):5162-5175.
    [18] WU D,ZHOU R,LIU M,et al.Numerical investigation of the stability of rotating detonation engines[J].Combustion Science&Technology,2014,186(10/11):1699-1715.
    [19] WU D,LIU Y,LIU Y,et al.Numerical investigations of the re-stabilization of hydrogen-air rotating detonation engines[J].International Journal of Hydrogen Energy,2014,39(28):15803-15809.
    [20] YAO Songbai,LIU Meng,WANG Jianping.Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine[J].Combustion Science&Technology,2015,187(12):1867-1878.
    [21] YAO Songbai,MA Zhuang,ZHANG Shujie,et al.Re initiation phenomenon in hydrogen-air rotating detonation engine[J].International Journal of Hydrogen Energy,2017,42(47):28588-28598.
    [22]徐雪阳,卓长飞,武晓松,等.非预混喷注对旋转爆震发动机影响的数值研究[J].航空学报,2016,37(4):1184-1195.XU Xueyang,ZHUO Changfei,WU Xiaosong,et al.The effect of non-premixed injection on rotating detonation engine[J].Acta Aeronautica et Astronautica Sinica,2016,37(4):1184-1195.(in Chinese)
    [23] DUBROVSKII A V,IVANOV V S,FROLOV S M.Three-dimensional numerical simulation of the operation process in a continuous detonation combustor with separate feeding of hydrogen and air[J].Russian Journal of Physical Chemistry B,2015,9(1):104-119.
    [24] SMIRNOV N N,NIKITIN V F,PHYLIPPOV Y G.Deflagration-to-transition in gases in tubes with cavities[J].Journal of Engineering Physics and Thermophysics,2010,83(6):1287-1316.
    [25] DENG Li,MA Hu,XU Can,et al.The feasibility of mode control in rotating detonation engine[J].Applied Thermal Engineering,2018,129:1538-1550.
    [26]周朱林,刘卫东,刘世杰,等.基于侧向膨胀影响爆震波的自持机理[J].航空动力学报,2013,28(9):1967-1974.ZHOU Zhulin,LIU Weidong,LIU Shijie,et al.Numerical investigation on unsteady characteristics of tip leakage vortex of transonic compressor rotor[J].Journal of Aerospace Power,2013,28(9):1967-1974.(in Chinese)
    [27]张旭东,范宝春,归明月,等.旋转爆轰的三维结构和侧向稀疏波的影响[J].爆炸与冲击,2010,30(4):337-341.ZHANG Xudong,FAN Baochun,GUI Mingyue,et al.Three-dimensional numerical investigation on structure and radial variation of rotating detonation flow field[J].Explosion and Shock Waves,2010,30(4):337-341.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700