拮抗菌巨大芽孢杆菌L2发酵条件的响应面优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of fermentation conditions of antagonistic bacterium Bacillus megaterium L2 by response surface methodology
  • 作者:吉玉玉 ; 黄慧 ; 肖洋 ; 陈雪 ; 代园凤 ; 李祝 ; 杨龙 ; 张素 ; 赵妗颐 ; 唐婧红 ; 张钦语
  • 英文作者:JI Yuyu;HUANG Hui;XIAO Yang;CHEN Xue;DAI Yuanfeng;LI Zhu;YANG Long;ZHANG Su;ZHAO Jinyi;TANG Jinghong;ZHANG Qinyu;Bijie Subsidiary in Guizhou Tobacco Company;College of Life Science,Guizhou University;Institution of Supervision and Inspection Product Quality of Guizhou Province;
  • 关键词:巨大芽孢杆菌 ; 链格孢菌 ; 发酵条件 ; 优化
  • 英文关键词:Bacillus megaterium;;Alternaria alternaria;;fermentation conditions;;optimization
  • 中文刊名:ZNGZ
  • 英文刊名:China Brewing
  • 机构:贵州省烟草公司毕节市公司;贵州大学生命科学学院;贵州省产品质量监督检测院;
  • 出版日期:2018-08-25
  • 出版单位:中国酿造
  • 年:2018
  • 期:v.37;No.318
  • 基金:国家自然科学基金项目(31660533);; 贵州省科技计划项目(黔科合平台人才[2017]5613号);; 贵州省烟草公司毕节市公司科技项目(201752050024100);; 贵州省科技厅农业攻关项目(黔科合NY[2014]3033号)
  • 语种:中文;
  • 页:ZNGZ201808024
  • 页数:6
  • CN:08
  • ISSN:11-1818/TS
  • 分类号:112-117
摘要
为探明拮抗菌巨大芽孢杆菌(Bacillus megaterium)L2的发酵条件,提高其抑菌活性,以链格孢菌(Alternaria alternaria)为指示菌,以抑菌圈直径为响应值,优化其发酵条件。在单因素试验的基础上,采用响应面法对发酵条件中各因素进行优化。结果表明:最优发酵条件为牛肉膏4.6 g/L,氯化钠3.0 g/L,初始p H值为7.0,葡萄糖15 g/L,接种量6%,装液量50 m L/250 m L。在此优化条件下,抗菌物质的抑菌圈直径大小从未优化前的(14.55±0.43)mm提高至(34.99±0.14)mm,抑菌圈直径增加了140.48%。
        In order to investigate the fermentation conditions of antagonistic bacterium Bacillus megaterium L2 and improve the bacteriostatic activity, using Alternaria alternaria as indicator bacterium and the diameter of the inhibition zone as the response value, the fermentation conditions were optimized. On the basis of single factor experiments, the factors affecting the fermentation conditions were optimized by response surface methodology. The results showed that the optimal fermentation conditions were as follows: beef extract 4.6 g/L, sodium chloride 3.0 g/L, initial p H value 7.0,glucose 15 g/L, inoculum 6% and loading volume 50 ml/250 ml. Under the optimized conditions, the inhibition zone diameter of antimicrobial substances increased from(14.55±0.43) mm to(34.99±0.14) mm, which increased 140.48%.
引文
[1]ECKERT J W.Posthavest disease of fresh fruits and vegetables[J].J Food Biochem,1978,2:248-254.
    [2]毕阳,张维一.果蔬采后病害与控制[M].北京:中国农业出版社,1996:156-158.
    [3]EI-GHAOUTH A,WILSON C L,WISNIEWSKI M E.Biologically based alternatives to synthetic fungicides for the postharvest diseases of fruit and vegetables.In:Naqvi,S.A.M.H.(Ed.),diseases of fruit and vegetables[M].The Netherlands:Kluwre Academic Publishers,2004:511-535.
    [4]徐瑞波,刘炜玮,王明艳,等.荠菜黄酮的超声提取工艺研究[J].食品科技,2007,32(8):149-151.
    [5]许瑞波,王明艳,史继斌,等.荠菜中混合氨基酸的提取工艺研究[J].食品科技,2004,29(8):15-18.
    [6]黄伟,冯作山,白羽嘉,等.采后果实链格孢属真菌病害防治方法研究进展[J].食品与机械,2016,32(3):247-252.
    [7]吴振宇,艾启俊,王燕,等.中草药提取物对几种果蔬采后病原真菌的离体抑制作用[J].植物保护科学,2008,24(5):294-298.
    [8]MANJULA K,KISHORE G K,PODILE A R.Whole cells of Bacillus subtilis AF1 proved more effective than cell-free and chitinase-based formulations in biological control of citrus fruit rot and groundnut rust[J].Canad J Microbiol,2004,50:737-744.
    [9]黄健,曾顺德,张迎君.果蔬采后病害生物防治研究进展[J].西南园艺,2005,33(5):23-25.
    [10]田世平,范青.控制果蔬采后病害的生物学技术[J].植物学通报,2000,17(3):211-217.
    [11]JANISIEWICZ W J,ROITMAN J.Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia[J].Phytopathology,1988,78(12):1697-1700.
    [12]COOK R J.Making greater use of introduced microorganisms for biological control pathogens[J].Ann Rev Phytopathol,1993,31(1):53-80.
    [13]DOCK L L,NIELSEN P V,FLOROS J D.Biological control of Botrytis cinerea growth on apples stored under modified atomospheres[J].J Food Protect,1998,61(12):1661-1665.
    [14]KORSTEN L,DE VILLIERS E E,WEHNER F C,et al.Field sprayed of Bacillus subtilis and fungicides for control of preharvest fruit diseases of avocado in South Africa[J].Plant Dis,1997,81(5):455-459.
    [15]TEIXIDO N,VIAS I,USALL J,et al.Control of blue mould of apples by preharvest application of Candida sake grown in media with different water activity[J].Phytopathology,1998,88(9):960-964.
    [16]IPPOLITO A,EL-GHAOUTH A,WILSON C L,et al.Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defence responses[J].Postharv Biol Tech,2000,19(3):265-272.
    [17]EL-GHAOUTH A,SMILANICK J L,BROWN G E,et al.Control of decay of apple and citrus fruits in semicommercial tests with Candida saitoana and 2-Deoxy-D-glucose[J].Biol Control,2001,20(20):96-101.
    [18]胡美姣,刘秀娟,张令宏.热带亚热带水果采后病害的生物防治[J].热带农业科学,2001,4(2):5l-59.
    [19]程亮,游春平,肖爱萍.拮抗细菌的研究进展[J].江西农业大学学报,2003,25(5):732-737.
    [20]刘晓琳,马荣,梁英梅,等.拮抗菌株xj063-1发酵条件的优化及室内防效测定[J].植物保护学报,2015,42(5):820-826.
    [21]ABDALLA S A,ALGAM S A A,IBRAHIM E A,et al.In vitro screening of Bacillus isolates for biological control of early blight disease of tomato in shambat soil[J].World J Agr Res,2014,2(2):47-50.
    [22]ARREBOLA E,JACOBS R,KORSTEN L.Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004against postharvest fungal pathogens[J].J Appl Microbiol,2009(9):15.
    [23]KILDEA S,RANSBOTYN V,KHAN M R,et al.Bacillus megaterium shows potential for the bio-control of Septoria tritici blotch of wheat[J].Biol Control,2008,47:37-45.
    [24]王梅,刘兆辉,江丽华,等.巨大芽孢杆菌固定化包埋材料的初步研究[J].江西农业学报,2009,21(12):57-58.
    [25]郭晓军,李潞滨,李术娜,等.毛竹枯梢病拮抗细菌巨大芽孢杆菌6-59菌株的产芽孢条件优化[J].植物保护学报,2008,35(5):443-447.
    [26]秦健,袁高庆,王雅,等.巨大芽孢杆菌B196菌株发酵滤液的抑菌谱及其稳定性[J].西南农业学报,2012,25(5):1694-1697.
    [27]吕黎,王蕾,周佳敏,等.巨大芽孢杆菌的研究现状及应用[J].农业科学研究,2014,35(3):48-52.
    [28]杨龙,万科,肖洋,等.巨大芽孢杆菌L2菌株生防机制的初步研究[J].中国酿造,2016,35(12):80-83.
    [29]刘静,王军,姚建铭,等.枯草芽孢杆菌JA抗菌物特性的研究及抗菌肽的分离纯化[J].微生物学报,2004,44(4):511-514.
    [30]李丽,刘露,闫红雪,等.一株巨大芽孢杆菌及其发酵培养基的优化[J].现代农业科技,2013(24):202-204.
    [31]李静,徐建华.响应面法优化超声提取沙棘果渣总黄酮的工艺研究[J].中国酿造,2013,32(7):32-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700