植物对滨海湿地地面高程变化的影响研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in Researches on Effects of Vegetation on Surface Elevation Change in Coastal Wetland Ecosystems
  • 作者:王国栋 ; 吕宪国 ; 刘兴土 ; 何兴元 ; 姜明
  • 英文作者:WANG Guodong;LYU Xianguo;LIU Xingtu;HE Xingyuan;JIANG Ming;Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences;
  • 关键词:植物 ; 滨海湿地 ; 地面高程变化 ; 海平面上升
  • 英文关键词:vegetation;;coastal wetlands;;surface elevation change;;sea level rise
  • 中文刊名:KXSD
  • 英文刊名:Wetland Science
  • 机构:中国科学院湿地生态与环境重点实验室中国科学院东北地理与农业生态研究所;
  • 出版日期:2019-06-15
  • 出版单位:湿地科学
  • 年:2019
  • 期:v.17
  • 基金:国家自然科学基金项目(41877075和41620104005);; 吉林省自然科学基金项目(20190201017JC);; 中国科学院青年创新促进会基金项目(2019234)资助
  • 语种:中文;
  • 页:KXSD201903001
  • 页数:6
  • CN:03
  • ISSN:22-1349/P
  • 分类号:3-8
摘要
海平面上升对全球滨海湿地造成了严重的威胁,滨海湿地的地面高程能否与不断上涨的海平面发生对应的同步变化,是滨海湿地能否成功应对海平面上升的关键。阐述了滨海湿地地面高程变化的影响因素,认为滨海湿地地面高程的变化受物理过程和生物过程的双重影响;介绍了滨海湿地地面高程变化主要监测技术,分析了基于地面高程监测系统—水平标志层(surface elevation table-marker horizon,SET-MH)技术的滨海湿地地面高程变化研究现状;揭示了植物对滨海湿地地面高程变化的作用机制,认为植物主要通过地上枯落物的累积与分解、地上部分对外来泥沙沉积的影响、地下根系累积3方面影响滨海湿地地面高程的变化。
        Sea level rise threatens the coastal wetlands around the globe. A key determinant of vulnerability of coastal wetlands to sea level rise is whether the soil surface elevation in the intertidal zone can keep pace with rising sea level. We explain main processes which affect the elevation change of the wetlands, and find that vertical changes in the position of the soil surface are driven by both physical and biological processes which lead to a net gain or loss in elevation over time. We introduce technologies tracking surface elevation change,and summarize published studies using surface elevation table-marker horizon(SET-MH) to track soil surface elevation change in the coastal wetland ecosystems. Vegetation influences elevation through litter and woody debris accumulation/decomposition, sediment trapping, and subsurface root accumulation.
引文
[1]Costanza R, de Groot R, Sutton P, et al. Changes in the global value of ecosystem services[J]. Global Environmental Change, 2014, 26(1):152-158.
    [2]刘兴土.中国主要湿地区湿地保护与生态工程建设[M].北京:科学出版社, 2017.
    [3]牟晓杰,刘兴土,阎百兴,等.中国滨海湿地分类系统[J].湿地科学, 2015, 1133(1):19-26.
    [4]国家林业局.第二次全国湿地资源调查结果[J].国土绿化,2014(2):6-7.
    [5]罗舒心,万新月,熊欣悦,等.海岸挤迫现象对滨海湿地丧失的影响及对策研究综述[J].湿地科学, 2015, 1133(6):778-784.
    [6]雷茵茹,崔丽娟,李伟,等.气候变化对中国滨海湿地的影响及对策[J].湿地科学与管理, 2016, 1122(2):59-62.
    [7]IPCC. Climate Change 2014:Synthesis Report[R]. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change(Core Writing Team, Pachauri R K, Meyer L A, eds.), IPCC, Geneva, Switzerland, 2014:151.
    [8]国家海洋局. 2016年中国海平面公报[R/OL].[2017-06-18]. http://www.soa.gov.cn/zwgk/hygb/zghpmgb/.
    [9]Nicholls R J. Coastal flooding and wetland loss in the 21st century:changes under the SRES climate and socio-economic scenarios[J]. Global Environmental Change, 2004, 1144:69-86.
    [10]Pfeffer W T, Harper J T, O'Neel S. Kinematic constraints on glacier contributions to 21st-century sea-level rise[J]. Science,2008, 332211:1340-1343.
    [11]Nicholls R J, Cazenave A. Sea-level rise and its impact on coastal zones[J]. Science, 2010, 332288:1517-1520.
    [12]王宁,张利权,袁琳,等.气候变化影响下海岸带脆弱性评估研究进展[J].生态学报, 2012, 3322(7):2248-2258.
    [13]Lovelock C E, Cahoon D R, Friess D A, et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise[J]. Nature,2015, 552266:559-563.
    [14]崔利芳.海平面上升影响下长江口滨海湿地脆弱性评价[D].上海:华东师范大学, 2016.
    [15]Cheng H Q, Chen J Y. Adapting cities to sea level rise:A perspective from Chinese deltas[J]. Advances in Climate Change Research, 2017, 88(2):130-136.
    [16]Webb E L, Friess D A, Krauss K W, et al. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise[J]. Nat. Clim. Change, 2013, 33:458-465.
    [17]Stagg C L, Krauss K W, Cahoon D R, et al. Processes contributing to resilience of coastal wetlands to sea-level rise[J]. Ecosystems, 2016, 1199(8):1445-1459.
    [18]崔利芳,王宁,葛振鸣,等.海平面上升影响下长江口滨海湿地脆弱性评价[J].应用生态学报, 2014, 2255(2):553-561.
    [19]马学垚,杜嘉,梁雨华,等. 20世纪60年代以来6个时期长江三角洲滨海湿地变化及其驱动因素研究[J].湿地科学, 2018, 16(3):303-312.
    [20]Baumann R H, Day J W, Miller C A, et al. Mississippi deltaic wetland survival:sedimentation versus coastal submergence[J].Science, 1984, 222244:1093-1095.
    [21]Day J W, Rybczyk J, Scarton F, et al. Soil accretionary dynamics, sea-level rise and the survival of wetlands in Venice Lagoon:a field and modelling approach[J]. Estuarine, Coastal and Shelf Science, 1999, 4499:607-628.
    [22]Blum M D, Roberts H H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise[J]. Nature Geoscience, 2009, 22:488-491.
    [23]Gesch D B. Analysis of LiDAR elevation data for improved identification and delineation of lands vulnerable to sea-level rise[J]. Journal of Coastal Research, 2009, 2255(6):49-58.
    [24]唐新明,李国元.激光测高卫星的发展与展望[J].国际太空,2017(11):13-18.
    [25]Cahoon D R, Lynch J C, Perez B C, et al. High-precision measurements of wetland sediment elevation:II. The rod surface elevation table[J]. Journal of Sedimentary Research, 2002, 72:734-739.
    [26]Lynch J C, Hensel P, Cahoon D R. The surface elevation table and marker horizon technique:A protocol for monitoring wetland elevation dynamics:Fort Collins, Colorado, National Park Service[R]. Natural Resource Report NPS/NCBN/NRR-2015/1078, xviii, 2015:306.
    [27]McKee K L. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems[J]. Estuarine Coastal&Shelf Science, 2011, 9911(4):475-483.
    [28]Krauss K W, Cormier N, Osland M J, et al. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise[J]. Scientific Reports, 2017, 77(1):1030
    [29]Baustian J J, Mendelssohn I A, Hester M W. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise[J]. Global Change Biol., 2012, 18:3377-3382.
    [30]Graham S A, Mendelssohn I A. Coastal wetland stability maintained through counterbalancing accretionary responses to chronic nutrient enrichment[J]. Ecology, 2014, 9955:3271-3283.
    [31]Wang G D, Wang M, Lu X G, et al. Surface elevation change and susceptibility of coastal wetlands to sea level rise in Liaohe Delta,China[J]. Estuarine, Coastal and Shelf Science, 2016, 180:204-211.
    [32]Wang G D, Wang M, Jiang M, et al. Effects of vegetation type on surface elevation change in Liaohe River Delta wetlands facing accelerated sea level rise[J]. Chinese Geographical Science,2017, 277(5):810-817.
    [33]Krauss K W, McKee K L, Lovelock C E, et al. How mangrove forests adjust to rising sea level[J]. New Phytologist, 2014, 202(1):19-34.
    [34]Lovelock C E, Bennion V, Grinham A, et al. The role of surface and subsurface processes in keeping pace with Sea Level Rise in intertidal wetlands of Moreton Bay, Queensland, Australia[J].Ecosystems, 2011, 1144(5):745-757.
    [35]Rogers K, Wilton K M, Saintilan N. Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia[J]. Estuarine, Coastal and Shelf Science, 2006, 6666:559-569.
    [36]Nyman J A, Walters R J, Delaune R D, et al. Marsh vertical accretion via vegetative growth[J]. Estuarine, Coastal and Shelf Science, 2006, 6699:370-380.
    [37]Middleton B A, Mckee K L. Degradation of mangrove tissues and implications for peat formation in Belizean island forests[J].Journal of Ecology, 2001, 8899:818-828.
    [38]Romero L M, Smith T J, Fourqurean J W. Changes in mass and nutrient content of wood during decomposition in a south Florida mangrove forest[J]. Journal of Ecology, 2005, 9933(3):618-631.
    [39]Young B M, Harvey L E. A spatial analysis of the relationship between mangrove(Avicennia marina var. australasica)physiognomy and sediment accretion in the Hauraki Plains, New Zealand[J]. Estuarine Coastal&Shelf Science, 1996, 4422(2):231-246.
    [40]Kumara M P, Jayatissa L P, Krauss K W, et al. High mangrove density enhances surface accretion, surface elevation change,and tree survival in coastal areas susceptible to sea-level rise[J].Oecologia, 2010, 116644(2):545-553.
    [41]Krauss K W, Allen J A, Cahoon D R. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests[J]. Estuarine Coastal&Shelf Science, 2003, 5566(2):251-259.
    [42]Li H, Yang S L. Trapping effect of tidal marsh vegetation on suspended sediment, Yangtze Delta[J]. Journal of Coastal Research,2009, 2255:915-924.
    [43]高芳磊,王浩东,郭宏宇,等.盐地碱蓬和芦苇苗期的竞争作用[J].湿地科学, 2015, 1133(5):582-586.
    [44]Leonard L A, Wren P A, Beavers R L. Flow dynamics and sedimentation in Spartina alterniflora and Phragmites australis marshes of the Chesapeake Bay[J]. Wetlands, 2002, 2222:415-424.
    [45]Neubauer S C. Contributions of mineral and organic components to tidal freshwater marsh accretion[J]. Estuarine Coastal&Shelf Science, 2008, 7788(1):78-88.
    [46]McKee K L, Cahoon D R, Feller I C. Caribbean mangroves adjust to rising sea level through biotic controls on soil elevation change[J]. Global Ecology&Biogeography, 2007, 16(5):545-556.
    [47]Saintilan N, Rogers K, Mazumder D, et al. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands[J]. Estuarine Coastal&Shelf Science, 2013, 112288(1):84-92.
    [48]Poret N, Twilley R R, Rivera-Monroy V H, et al. Belowground decomposition of mangrove roots in Florida coastal everglades[J]. Estuaries&Coasts, 2007, 3300(3):491-496.
    [49]Metcalfe D B, Meir P, Arag?o L E O C, et al. The effects of water availability on root growth and morphology in an Amazon rainforest[J]. Plant&Soil, 2008, 331111(1-2):189-199.
    [50]Casta?eda-Moya E, Twilley R R, Rivera-Monroy V H, et al. Patterns of root dynamics in mangrove forests along environmental gradients in the Florida coastal Everglades, USA[J]. Ecosystems,2011, 1144(7):1178-1195.
    [51]McCormack M L, Adams T S, Smithwick E A, et al. Predicting fine root lifespan from plant functional traits in temperate trees[J]. New Phytologist, 2012, 19955(4):823.
    [52]万斯昂,刘兴土,牟晓杰.双台河口四种类型湿地土壤中的碳、氮含量垂直分布特征[J].湿地科学, 2017, 1155(4):629-634.
    [53]Cahoon D R, Hensel P, Rybczyk J, et al. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch[J]. Journal of Ecology, 2003, 9911(6):1093-1105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700