流域陆地生态系统水体净化服务表征及驱动力分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characterizing water purification services and quantifying their driving factors in watershed terrestrial ecosystems
  • 作者:刘洋 ; 吕建树 ; 毕军
  • 英文作者:LIU Yang;LV Jianshu;BI Jun;Business School, University of Jinan;Shandong Longshan Green Economic Research Center;School of Geography and Environment, Shandong Normal University;School of the Environment, Nanjing University;
  • 关键词:陆地生态系统 ; 水体净化服务 ; 时空变化 ; 驱动力 ; 太湖流域
  • 英文关键词:terrestrial ecosystem;;water purification services;;spatiotemporal variation;;driving factor;;Taihu Lake Basin
  • 中文刊名:DLKJ
  • 英文刊名:Progress in Geography
  • 机构:济南大学商学院;山东龙山绿色经济研究中心;山东师范大学地理与环境学院;南京大学环境学院;
  • 出版日期:2019-04-28 17:08
  • 出版单位:地理科学进展
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金项目(41701604,41601549);; 山东省自然科学基金项目(ZR2017BD003);; 济南大学博士基金项目(16010023)~~
  • 语种:中文;
  • 页:DLKJ201904011
  • 页数:12
  • CN:04
  • ISSN:11-3858/P
  • 分类号:126-137
摘要
陆地生态系统的水体净化服务能过滤地表径流中的污染物,有助于防控流域非点源污染。准确表征该服务的时空变化特征,定量探索其驱动机制则是生态系统服务应用的前提。论文以太湖流域典型地区为例,利用空间分布式的生物物理模型,研究流域陆地水体净化服务的空间格局与时间演变特征,并借助GIS空间统计方法及面板数据模型分析其主导驱动力。结果显示:2000—2010年间研究区59.19%、58.27%的面积分别为氮、磷净化服务的弱降低区。2000—2005年与2005—2010年两个时间段内研究区氮净化服务先下降后略有上升,其中苏州市区增幅最大;磷净化服务为下降趋势,以无锡和苏州市区降幅最大。气候因素和水网密度对水体净化服务具有显著正影响,而负向驱动力则存在差异。为此应采取适当的措施调整主导因素,提高陆地生态系统的水体净化服务,减少氮、磷排放,为流域非点源污染治理及水环境管理提供支撑。
        Water purification services of the terrestrial ecosystem can filter out pollutants in surface runoff,which helps to reduce emissions into the water body. Therefore, improving these services is an effective way to control non-point source pollution in watersheds, and accurately quantifying the spatiotemporal characteristics and driving factors of change of the services is the precondition for such improvement. Purification services for nitrogen and phosphorus are two typical water purification services, which can be quantified by nitrogen and phosphorus exports as the reverse proxy indicators. Taking a representative area of the Taihu Lake Basin in 2000-2010 as a case, we used the nutrient purification model in the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST) tool to quantify nitrogen and phosphorus indicators of terrestrial ecosystem. The spatial pattern and temporal variation of purification services for nitrogen and phosphorus were characterized by the spatial analysis method in ArcGIS. In order to quantify the driving factors of change of the services, we developed a panel data model based on 31 selected factors and GIS spatial statistics methods. The results show that there were obvious spatial heterogeneities between nitrogen and phosphorus indicators and change over time. Both nitrogen and phosphorus purification services showed a spatial characteristic of widely weak decrease from 2000 to 2010, with the areal ratios of 59.19% and 58.27%, respectively. With regard to the temporal variation of service amount, nitrogen purification service of the study area first reduced then increased slightly during 2000-2005 and 2005-2010, and the increase in Suzhou urban district, Wuxi urban district, and Kunshan City were obvious. Phosphorus purification service was always in decline during 2000-2005 and 2005-2010,and the urban districts of Wuxi and Suzhou experienced the largest reduction. Water purification services are influenced by multiple driving factors in the physical, social, and economic domains. Climatic factors and water network density had significant positive influences on these two services, while the negative driving factors differed. Arable land proportion, village density, and agricultural population density had major negative effects on nitrogen purification service; while urban land density mainly impacted negatively on phosphorus purification service. Therefore, appropriate measures should be implemented to improve these two water purification services according to the driving factor analysis. Climate change adaptation policy can contribute to synergistically manage nitrogen and phosphorus purification services. Meanwhile, different control measures should be taken because of the varied driving factors between nitrogen and phosphorus purification services.Improving production and living conditions in rural areas and guiding individual behaviors of farmers can help to reduce the impact of agricultural activities on nitrogen purification service. Adjusting production and daily living activities in urban areas can reduce phosphorus emissions and enhance the phosphorus purification service of the terrestrial ecosystem. This study can provide support for non-point source pollution control and water management in watersheds.
引文
白杨,郑华,庄长伟,等.2013.白洋淀流域生态系统服务评估及其调控[J].生态学报,33(3):711-717.[Bai Y,Zheng H,Zhuang C W,et al.2013.Ecosystem services valuation and its regulation in Baiyangdian Basin:Based on InVESTmodel.Acta Ecologica Sinica,33(3):711-717.]
    陈晓红,周宏浩.2018.城市化与生态环境关系研究热点与前沿的图谱分析[J].地理科学进展,37(9):1171-1185.[Chen X H,Zhou H H.2018.Research hotspots and prospects of urbanization and ecological environment relationship based on visual knowledge mapping.Progress in Geography,37(9):1171-1185.]
    段亮,段增强,夏四清.2006.太湖旱地非点源污染定量化研究[J].水土保持通报,26(6):40-43.[Duan L,Duan Z Q,Xia S Q.2006.Quantification of non-point pollution from uplands in Taihu Lake Catchment.Bulletin of Soil and Water Conservation,26(6):40-43.]
    黄林,王峰,周立江,等.2012.不同森林类型根系分布与土壤性质的关系[J].生态学报,32(19):6110-6119.[Huang L,Wang F,Zhou L J,et al.2012.Root distribution in the different forest types and their relationship to soil properties.Acta Ecologica Sinica,32(19):6110-6119.]
    纪迪,张慧,沈渭寿,等.2013.太湖流域下垫面改变与气候变化的响应关系[J].自然资源学报,28(1):51-62.[Ji D,Zhang H,Shen W S,et al.2013.The response relationship between underlying surface changing and climate change in the Taihu Basin.Journal of Natural Resources,28(1):51-62.]
    李恒鹏,杨桂山,黄文钰,等.2007.太湖上游地区面源污染氮素入湖量模拟研究[J].土壤学报,44(6):1063-1069.[Li H P,Yang G S,Huang W Y,et al.2007.Simulating fluxes of non-point source nitrogen from upriver region of Taihu Basin.Acta Peologica Sinica,44(6):1063-1069.]
    吕刚,魏忠平,高英旭,等.2013.不同土地利用类型植物根系与土壤抗蚀性关系研究[J].干旱地区农业研究,31(2):111-115.[Lv G,Wei Z P,Gao Y X,et al.2013.Study on relationship between plant roots and soil anti-erodibility of different land utilization types.Agricultural Research in the Arid Areas,31(2):111-115.]
    吕文,杨桂山,万荣荣,等.2013.太湖流域春季不同土地利用类型蒸散速率的比较[J].水土保持通报,33(5):202-209.[Lv W,Yang G S,Wan R R,et al.2013.Comparison study on evapotranspiation characteristics of different landuse types in Taihu Lake Wastershed.Bulletin of Soil and Water Conservation,33(5):202-209.]
    王宁,郭红岩,王晓蓉,等.2008.太湖河网地区农村非点源氮负荷:以宜兴市大浦镇为例[J].生态学杂志,27(4):557-562.[Wang N,Guo H Y,Wang X R,et al.2008.Nitrogen load from ruralnon-point source in river network region,Taihu Lake:A case study from Dapu Town in Yixing City.Chinese Jurnal of Eology,27(4):557-562.]
    王小治,王爱礼,尹微琴,等.2009.太湖流域农业非点源污染优先识别区研究:以昆山为例[J].农业环境科学学报,28(9):1874-1879.[Wang X Z,Wang A L,Yin W Q,et al.2009.Application of agricultural non-point source pollution potential index in typical area of Taihu:A case study in Kunshan City.Journal of Agro-Environment Science,28(9):1874-1879.]
    吴攀,秦伯强,于革,等.2015.太湖上游流域经济发展对废水排放及入湖总磷的影响[J].湖泊科学,27(6):1107-1114.[Wu P,Qin B Q,Yu G,et al.2015.Effects of economic development on wastewater discharge and influent total phosphorus load in the upstream of Lake Taihu Basin.Journal of Lake Science,27(6):1107-1114.]
    夏敏,班伟,赵冰雪.2013.太湖流域非点源污染负荷估算系统的设计与应用[J].水土保持通报,33(3):197-201.[Xia M,Ban W,Zhao B X.2013.Design and application of norrpoint source pollution load estimating system in Taihu Lake Basin.Bulletin of Soil and Water Conservation,33(3):197-201.]
    闫丽珍,石敏俊,王磊.2010.太湖流域农业面源污染及控制研究进展[J].中国人口·资源与环境,20(1):99-107.[Yan L Z,Shi M J,Wang L.2010.Review of agricultural non-point pollution in Taihu Lake and Taihu Basin.China Population,Resources and Environment,20(1):99-107.]
    闫庆武,卞正富,赵华.2005.人口密度空间化的一种方法[J].地理与地理信息科学,21(5):45-48.[Yan Q W,Bian Z F,Zhao H.2005.A method of spatialization of population density.Geography and Geo-Information Science,21(5):45-48.]
    赵文武,刘月,冯强,等.2018.人地系统耦合框架下的生态系统服务[J].地理科学进展,37(1):139-151.[Zhao WW,Liu Y,Feng Q,et al.2018.Ecosystem services for coupled human and environment systems.Progress in Geography,37(1):139-151.]
    Andrew M E,Wulder M A,Nelson T A,et al.2015.Spatial data,analysis approaches,and information needs for spatial ecosystem service assessments:A review[J].GIScience&Remote Sensing,52(3):344-373.
    Chen J,Cui T,Wang H,et al.2018.Spatio-temporal evolution of water-related ecosystem services:Taihu Basin,China[J].PeerJ,6:e5041.doi:10.7717/peerj.5041.
    Gao J,Li F,Gao H,et al.2017.The impact of land-use change on water-related ecosystem services:A study of the Guishui River Basin,Beijing,China[J].Journal of Cleaner Production,163:S148-S155.
    Grizzetti B,Lanzanova D,Liquete C,et al.2016.Assessing water ecosystem services for water resource management[J].Environmental Science&Policy,61:194-203.
    Guswa A J,Brauman K A,Brown C,et al.2014.Ecosystem services:Challenges and opportunities for hydrologic modeling to support decision making[J].Water Resources Research,50(5):4535-4544.
    Hou Y,Li B,Müller F,et al.2016.Ecosystem services of human-dominated watersheds and land use influences:A case study from the Dianchi Lake Watershed in China[J].Environmental Monitoring&Assessment,188(11):1-19.
    Hu Y,Peng J,Liu Y,et al.2018.Integrating ecosystem services trade-offs with paddy land-to-dry land decisions:A scenario approach in Erhai Lake Basin,Southwest China[J].Science of the Total Environment,625:849-860.
    Huang L,Ban J,Huang Y,et al.2013.Multi-angle indicators system of non-point pollution source assessment in rural areas:A case study near Taihu Lake[J].Environmental Management,51(4):939-950.
    Jorda-Capdevila D,Gampe D,Huber V G,et al.2019.Impact and mitigation of global change on freshwater-related ecosystem services in southern Europe[J].Science of the Total Environment,651:895-908.
    Jose-Manuel A M,Susana S S,Calabuig E D L.2011.Modelling the risk of land cover change from environmental and socio-economic drivers in heterogeneous and changing landscapes:The role of uncertainty[J].Landscape&Urban Planning,101(2):108-119.
    Keeler B,Dalzell B J,Pennington D,et al.2013.Comparing SWAT and InVEST models for water yield and nutrient export:When is a simple model good enough for decision support?[R].American Geophysical Union,Fall Meeting2013.San Francisico:American Geophysical Union:1135.
    Kirsten H,Michel L,Stefano A.2018.How ecological feedbacks between human population and land cover influence sustainability[J].PLOS Computational Biology,14(8):e1006389.
    La Notte A,Dalmazzone S.2018.Sustainability assessment and causality nexus through ecosystem service accounting:The case of water purification in Europe[J].Journal of Environmental Management,223:964-974.
    Li J,Jiang H,Bai Y,et al.2016.Indicators for spatial-temporal comparisons of ecosystem service status between regions:A case study of the Taihu River Basin,China[J].Ecological Indicators,60:1008-1016.
    Liu M,Huang G H,Liao R F,et al.2013.Fuzzy two-stage non-point source pollution management model for agricultural systems:A case study for the Lake Tai Basin,China[J].Agricultural Water Management,121:27-41.
    Mekonnen M M,Hoekstra A Y.2018.Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and waterpollution levels:A high-resolution global study[J].Water Resources Research,54(1):345-358.
    Nazmul H,Antje B,Lars R.2019.Interactions between freshwater ecosystem services and land cover changes in southern bangladesh:A perspective from short-term(seasonal)and long-term(1973-2014)scale[J].Science of The Total Environment,650:132-143.
    Ochoa V,Urbina-Cardona N.2017.Tools for spatially modeling ecosystem services:Publication trends,conceptual reflections and future challenges[J].Ecosystem Services,26:155-169.
    Ouyang Z Y,Zhang H,Xiao Y,et al.2016.Improvements in ecosystem services from investments in natural capital[J].Science,352:1455-1459.
    Pennington D N,Dalzell B,Nelson E,et al.2017.Cost-effective land use planning:Optimizing land use and land management patterns to maximize social benefits[J].Ecological Economics,139:75-90.
    Qi W,Li H,Zhang Q,et al.2019.Forest restoration efforts drive changes in land-use/land-cover and water-related ecosystem services in China's Han River Basin[J].Ecological Engineering,126:64-73.
    Redhead J W,May L,Oliver T H,et al.2017.National scale evaluation of the InVEST nutrient retention model in the United Kingdom[J].Science of the Total Environment,610-611:666-677.
    Reidsma P,Feng S Y,Van Loon M,et al.2012.Integrated assessment of agricultural land use policies on nutrient pollution and sustainable development in Taihu Basin,China[J].Environmental Science&Policy,18(4):66-76.
    Salvia-Castellvi M,Iffly J F,Borght P V,et al.2005.Dissolved and particulate nutrient export from rural catchments:A case study from Luxembourg[J].Science of the Total Environment,344(1-3):51-65.
    Seppelt R,Dormann C,Eppink F V,et al.2011.A quantitative review of ecosystem service studies:Approaches,shortcomings and the road ahead[J].Journal of Applied Ecology,48(3):630-636.
    Sharps K,Masante D,Thomas A,et al.2017.Comparing strengths and weaknesses of three ecosystem services modelling tools in a diverse UK river catchment[J].Science of the Total Environment,584-585:118-130.
    Shi X Z,Wang H J,Warner E D,et al.2010.Cross-reference for relating Genetic Soil Classification of China with WRB at different scales[J].Geoderma,154(1):344-350.
    Sun X,Crittenden J C,Li F,et al.2018.Urban expansion simulation and the spatio-temporal changes of ecosystem services,a case study in Atlanta metropolitan area,USA[J].Science of the Total Environment,622-623:974-987.
    Wong C P,Jiang B,Kinzig A P,et al.2015.Linking ecosystem characteristics to final ecosystem services for public policy[J].Ecology Letters,18(1):108-118.
    Xiao S,Lu Z,Feng L,et al.2018.Analyzing spatio-temporal changes and trade-offs to support the supply of multiple ecosystem services in Beijing,China[J].Ecological Indicators,94:117-129.
    Xu X,Yang G,Tan Y,et al.2016.Ecological risk assessment of ecosystem services in the Taihu Lake Basin of China from 1985 to 2020[J].Science of the Total Environment,554-555:7-16.
    Yan Y,Guan Q,Wang M,et al.2018.Assessment of nitrogen reduction by constructed wetland based on InVEST:Acase study of the Jiulong River Watershed,China[J].Marine Pollution Bulletin,133:349-356.
    Zhou Y,Ma J,Zhang Y,et al.2017.Improving water quality in China:Environmental investment pays dividends[J].Water Research,118:152-159.
    (1)包括江阴、宜兴、武进、溧阳、金坛、常熟、张家港、昆山、吴江、太仓、丹徒、丹阳、句容、溧水、高淳,以及无锡市区、常州市区、苏州市区、镇江市区2001、2006及2011年的统计年鉴。为避免行政区变化的影响,将各县(市、区)边界统一到2010年的行政边界,对应的乡镇数据也进行了调整。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700