纳米碳材料对含硼铝热剂燃烧性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influences of Nano-carbon Materials on Combustion Performance of Boron-based Thermite
  • 作者:刘洁 ; 李含健 ; 任慧 ; 焦清介
  • 英文作者:LIU Jie;LI Hanjian;REN Hui;JIAO Qingjie;State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology;Beijing Electro-Mechanical Engineering Institute;
  • 关键词:铝热剂 ; 纳米碳材料 ; 导热性能 ; 燃烧速率 ; 临界发火电流
  • 英文关键词:thermite;;nano-carbon material;;thermal conductivity;;burning rate;;critical firing current
  • 中文刊名:BIGO
  • 英文刊名:Acta Armamentarii
  • 机构:北京理工大学爆炸科学与技术国家重点实验室;北京机电工程研究所;
  • 出版日期:2019-01-15
  • 出版单位:兵工学报
  • 年:2019
  • 期:v.40;No.262
  • 基金:国家自然科学基金项目(U1530262)
  • 语种:中文;
  • 页:BIGO201901006
  • 页数:7
  • CN:01
  • ISSN:11-2176/TJ
  • 分类号:45-51
摘要
为改善含硼铝热剂的燃烧性能,在B/Mo O3体系中引入纳米片状石墨、碳纳米管、还原氧化石墨烯3种纳米碳材料。利用热流法测试了含硼铝热剂的导热性能;使用高速摄像机记录了含硼铝热剂的燃烧过程,并通过计算和分析得到了燃烧速率及其变化规律;采用金属桥带进行发火试验,测试铝热剂的临界发火电流。结果表明:添加3种碳材料能显著改善B/Mo O3铝热剂的导热性能,明显提高了燃烧速率,并降低了其临界发火电流;添加还原氧化石墨烯对铝热剂的影响最为明显,使得铝热剂导热系数提高258. 3%,燃烧速率提高1 756倍,临界发火电流降低27. 1%,证实还原氧化石墨烯显著改善了含硼铝热剂发火阈值高的问题。
        Three kinds of nano-carbon materials,including nanographite flake,carbon nanotubes and reduced graphene oxide,are introduced into the system of boron/molybdenum trioxide in order to improve the combustion performance of boron-based thermite. The thermophysical properties of boron-based thermite sample were tested using a heat flux method,and their combustion processes were recorded using a high-speed camera,while the burning rates were calculated and analyzed. Then the firing test was conducted with a metal bridge for testing the critical firing current of thermite. The test results show that the addition of nanocarbon materials could improve the heat-conducting property of B/MoO3 thermite,increase its burning rate,and reduce its critical firing current. In particular,the reduced graphene oxide is added to increase the thermal conductivity and burning rate of thermite by 258. 3% and 1 756 times,respectively,and the critical firing current is reduced by 27. 1%. The ignition test results of metal bridge show that the critical firing currents of thermite are decreased with maximum reduction of 27. 1%. It is proved that the reduced graphene oxide has the ability to reduce the firing threshold of thermite significantly.
引文
[1] MIZIOLEK A. Nanoenergetics:an emerging technology area of national importance[J]. Amptiac Quarterly,2002,6(1):43-48.
    [2] WILSON D E,KIM K. Combustion of consolidated and confined metastable intermolecular composites[C]∥Proceedings of the43rd AIAA Aerospace Science Meeting. Reno,NV,US:AIAA,2005:AIAA-2005-0275.
    [3]周俊虎,刘建忠,张彦威,等.硼的点火和燃烧[M].北京:科学出版社,2015.ZHOU J H,LIU J Z,ZHANG Y W,et al. Ignition and combustion of boron[M]. Beijing:Science Press,2015.(in Chinese)
    [4]宋秀铎,赵凤起,陈沛.固体推进剂用非铅燃速催化剂研究最新进展[J].含能材料,2004,12(3):184-188.SONG X D,ZHAO F Q,CHEN P. Advance on lead-free combustion catalysts for solid rocket propellant[J]. Chinese Journal of Energetic Materials,2004,12(3):184-188.(in Chinese)
    [5]王雅乐,卫芝贤,康丽.固体推进剂用燃烧催化剂的研究进展[J].含能材料,2015,23(1):89-98.WANG Y L,WEI Z X,KANG L. Progress on combustion catalysts of solid propellant[J]. Chinese Journal of Energetic Materials,2015,23(1):89-98.(in Chinese)
    [6]邵颖慧,王振宇,徐露萍.国外关于碳纳米管在火炸药中的应用研究[J].化学世界,2013,54(5):311-314.SHAO Y H,WANG Z Y,XU L P. The application of carbon nanotubes in propellants and explosives abroad[J]. Chemical World,2013,54(5):311-314.(in Chinese)
    [7] SIMAKOVA I L,PARMON V N. Catalytic aspects in the synthesis of a promising energetic material[M]. Berlin, Germany:Springer,2017.
    [8]王晗,赵凤起,李上文,等.碳物质在固体推进剂中的功能及其作用机理[J].火炸药学报,2006,29(4):32-35.WANG H,ZHAO F Q,LI S W,et al. Function of carbon materials used in solid propellants and their action mechanism[J]. Chinese Journal of Explosives&Propellants,2006,29(4):32-35.(in Chinese)
    [9]乔小晶,张同来,任慧,等.爆炸法制备膨胀石墨及其干扰性能[J].火炸药学报,2003,26(1):70-73.QIAO X J,ZHANG T L,REN H,et al. Preparation by explosion method and the interference function of expanded graphite[J].Chinese Journal of Explosives&Propellants,2003,26(1):70-73.(in Chinese)
    [10]陆明,周新利. RDX的TNT包覆钝感研究[J].火炸药学报,2006,29(6):16-18.LU M,ZHOU X L. Research on insensitivity of RDX coated with TNT[J]. Chinese Journal of Explosives&Propellants,2006,29(6):16-18.(in Chinese)
    [11] MANNING T G,STRAUSS B. Reduction of energetic filler sensitivity in propellants through coating:US6524706B1[P].2003-02-25.
    [12] FRANCISZEK O,OLIVER O,PATRICK F D,et al. Ammonium nitrate explosive composition containing vermicular low density expanded graphite:US3260632[P]. 1966-07-12.
    [13] VAJDA S,RABITZ H. Parametric sensitivity and self-similarity in thermal explosion theory[J]. Chemical Engineering Science,1992,47(5):1063-1078.
    [14] REN H,JIAO Q J,CHEN S C. Mixing Si and carbon nanotubes by a method of ball-milling and its application to pyrotechnic delay composition[J]. Journal of Physics&Chemistry of Solids,2010,71(2):145-148.
    [15] ADAMS C. Explosive/energetic fullerenes:US7025840[P].2006-04-11.
    [16] FOROHAR F,WHITAKER C,KOPPES W M. Functionalization of carbon nanotubes:US7807127B1[P]. 2010-10-05.
    [17] LI H J,REN H,JIAO Q J,et al. Fabrication and properties of insensitive CNT/HMX energetic nanocomposites as ignition ingredients[J]. Propellants Explosives Pyrotechnics,2016,41(1):126-135.
    [18] YU L,REN H,GUO X Y,et al. A novelε-HNIW-based insensitive high explosive incorporated with reduced graphene oxide[J]. Journal of Thermal Analysis&Calorimetry, 2014,117(3):1187-1199.
    [19] LIU J,REN H,JIAO Q J,et al. The influence of GO/RGO on the thermal decomposition of HNIW[J]. Integrated Ferroelectrics,2014,152(1):127-136.
    [20] ZHANG C Y,CAO X,XIANG B. Sandwich complex of TATB/graphene:an approach to molecular monolayers of explosives[J]. Journal of Physical Chemistry C,2010,114(51):22684-22687.
    [21] LI Z M,ZHOU M R,ZHANG T L,et al. The facile synthesis of graphene nanoplatelet-lead styphnate composites and their depressed electrostatic hazards[J]. Journal of Materials Chemistry A,2013,1(41):12710-12714.
    [22]李含健,刘洁,任慧,等.微纳结构铝热剂薄膜的旋涂制备及其燃烧性能[J].兵工学报,2017,38(2):267-272.LI H J,LIU J,REN H,et al. Spin-coating preparation of microand nano-thermite films and their combustion performances[J].Acta Armamentarii,2017,38(2):267-272.(in Chinese)
    [23]黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005.HUANG J F. Sol-gel principle and technology[M]. Beijing:Chemical Industry Press,2005.(in Chinese)
    [24] GASH A E,SIMPSON R L,SATCHER JR J H. Aerogels and sol-gel composites as nanostructured energetic materials[M].NY,US:Springer,2011.
    [25] SIMPSON R L,LEE R S,TILLOTSON T M,et al. Sol-gel manufactured energetic materials:US6666935[P]. 2003-12-23.
    [26]吴清良,赖燕玲,顾海静,等.导热系数测试方法的综述[J].佛山陶瓷,2011,21(12):20-22.WU Q L,LAI Y L,GU H J,et al. Introduction of text methods for thermal conductivity[J]. Foshan Ceramics,2011,21(12):20-22.(in Chinese)
    [27] MEGAHED A M. Heat flux and variable thermal conductivity effects on casson flow and heat transfer due to an exponentially stretching sheet with viscous dissipation and heat generation[J].International Journal of Chemical Reactor Engineering,2016,14(1):167-174.
    [28] CANBAZOGLU F M,VEMURI K P,BANDARU P R. Estimating interfacial thermal conductivity in metamaterials through heat flux mapping[J]. Applied Physics Letters,2015,106(14):126501.
    [29]梁基照.高分子复合材料传热学导论[M].广州:华南理工大学出版社,2013.LIANG J Z. Introduction to heat transfer of polymer composites[M]. Guangzhou:South China University of Technology Press,2013.(in Chinese)
    [30] MAMUNYA Y,BOUDENNE A,LEBOVKA N,et al. Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites[J]. Composites Science&Technology,2008,68(9):1981-1988.
    [31]陈永胜,黄毅.石墨烯:新型二维碳纳米材料[M].北京:科学出版社,2015.CHEN Y S,HUANG Y. Graphene:a new two-dimensional carbon nanomaterials[M]. Beijing:Science Press,2015.(in Chinese)
    [32] SON S F,ASAY B W,FOLEY T J,et al. Combustion of nanoscale Al/Mo O3thermite in microchannels[J]. Journal of Propulsion&Power,2012,23(4):715-721.
    [33]徐义华,胡旭,邹昊,等.基于多层氧化层结构的硼颗粒点火模型研究[J].兵工学报,2016,37(12):2242-2250.XU Y H,HU X,ZOU H,et al. Research on model of ignition of boron particle based on multiple oxide layer structure[J]. Acta Armamentarii,2016,37(12):2242-2250.(in Chinese)
    [34]程龙,刘攀,杨洪涛,等.低压环境下高密度压实黑火药柱燃速规律研究[J].兵工学报,2018,39(2):290-295.CHENG L,LIU P,YANG H T,et al. Research on burning rate law of high density compacted black powder in low pressure environment[J]. Acta Armamentarii,2018,39(2):290-295.(in Chinese)
    [35]于兰.石墨烯含能化功能改性研究[D].北京:北京理工大学,2015.YU L. Investigation on functionalized graphene with energetic groups and its energy performance[D]. Beijing:Beijing Institute of Technology,2015.(in Chinese)
    [36] DEAN S W. The Influence of gas generation on flame propagation for nano-Al based energetic materials[D]. TX,US:Texas Tech University,2008.
    [37]袁俊明,刘玉存. Neyer D-最优化的新感度试验方法研究[J].火工品,2005(2):25-27.YUAN J M,LIU Y C. Study on new Neyer D-optimal sensitivity test[J]. Initiators&Pyrotechnics,2005(2):25-27.(in Chinese)
    [38] SMETANA W,HOMOLKA H,REICHER R,et al. FEM failure analysis of thick-film initiators for automotive applications[J].Engineering Failure Analysis,2004,11(4):475-484.
    [39]周庆.电阻型换能元换能及发火规律研究[D].北京:北京理工大学,2012.ZHOU Q. Study on the resistive initiators energy conversion and firing regularity[D]. Beijing:Beijing Institute of Technology,2012.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700