碳化硼粉体合成方法的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Synthesis Methods of Boron Carbide Powder
  • 作者:种小川 ; 肖国庆 ; 丁冬海 ; 白冰
  • 英文作者:CHONG Xiaochuan;XIAO Guoqing;DING Donghai;BAI Bing;College of Materials and Mineral Resources,Xi'an University of Architecture and Technology;Postdoctoral Mobile Research Station of Materials Science and Engineering,Xi'an University of Architecture and Technology;State Key Laboratory of Advanced Refractories,Sinosteel Luoyang Institute of Refractories Research Co.,Ltd.;
  • 关键词:碳化硼 ; 碳热还原 ; 自蔓延高温合成
  • 英文关键词:boron carbide;;carbothermal reduction;;self-propagation high-temperature synthesis
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:西安建筑科技大学材料与矿资学院;西安建筑科技大学材料科学与工程博士后流动站;中钢集团洛阳耐火材料研究院有限公司先进耐火材料国家重点实验室;
  • 出版日期:2019-07-01
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(51572212;51502236;51772236);; 中国博士后科学基金(2016M602940XB);; 先进耐火材料国家重点实验室开放课题~~
  • 语种:中文;
  • 页:CLDB201915008
  • 页数:8
  • CN:15
  • ISSN:50-1078/TB
  • 分类号:61-68
摘要
作为一种难熔非金属超硬碳化物材料,碳化硼(B_4C)逐渐得到学者们的广泛关注,关于B_4C粉体的制备方法和应用已成为重要研究热点之一。B_4C不仅有超高的硬度,同时有高熔点、高的中子吸收性、化学稳定、低密度等诸多优异性能,被大量地应用于机械装备、磨具磨料、催化载体等领域。目前,B_4C粉体在耐火材料防氧化剂、高温热电偶、防护装甲、核反应堆屏蔽材料等领域的应用潜力被不断挖掘,但传统制备方法得到的B_4C粉体粒度不均匀、杂质含量高,尤其是颗粒粗大、形貌单一,使B_4C的优异性能难以充分发挥,严重限制了其应用。相对于传统的B_4C粉体,高纯度、低维度、粒度均匀的B_4C粉体能有效地改善B_4C材料的烧结性能,提高其断裂韧性。因此,制备高纯度、尺寸均匀、小粒径、高长径比的B_4C粉体更有意义。然而,B_4C是由90%以上的共价键组成且合成过程的动力学、热力学条件复杂,使得B_4C粉体合成困难,尤其是想通过低成本、简单工艺要求的方法合成高性能、应用领域广泛的B_4C粉体。因此,越来越多的研究者通过多种途径改进合成方法以得到性能优异的B_4C粉体,从而改善B_4C粉体的烧结性能、提高其断裂韧性,以此来满足越来越广泛的应用领域要求和适用于越来越苛刻的应用环境。近年来,许多文献报道通过多种方法都可以得到高纯度、低维度、粒度均匀的B_4C粉体。元素合成法制备的B_4C粉体虽然产量较小,但是一般纯度较高,工业中最常用的碳热还原法得到的B_4C的最小粒度为20~30 nm,快速节能的自蔓延高温合成法可以得到厚度为10~50 nm的片状B_4C,棒状、纤维状等特殊形貌的B_4C主要通过化学气相沉积法合成,而溶剂热还原法、VLS生长法、粒子束合成法等一些新的合成方法也都获得了纳米尺寸的B_4C粉体。这些最新的成果主要通过改变原料种类、提高原料品质、采用不同形貌的原料和催化剂及多种方法结合使用等手段来实现。此外,对B_4C生成过程的理论研究也促进了各种合成方法的不断发展。本文对B_4C的合成方法进行综述,重点对元素合成法、碳热还原法、自蔓延高温合成法、化学气相沉积法用于制备高纯度、低维B_4C的发展和研究现状进行了介绍,同时展望了B_4C制备方法的发展方向。
        As a refractory non-metallic superhard carbide material,boron carbide( B_4C) has attracted more and more attention,and the research on its preparation methods and application has became one of the hot topics. B_4C not only has ultra-high hardness,but also has many excellent properties such as high melting point,high neutron absorption,chemical stability,low density and so on. It has been widely used in mechanical equipment,abrasives,and catalytic carriers. However,with the potential of B_4C powder in the field of refractory antioxidants,high temperature thermocouples,protective armor,and nuclear reactor shielding materials and so on. The B_4C powder obtained by the traditional preparation method has uneven particle size and high impurity content,especially the coarse particles and single morphology,which can not fully exert the excellent performance of B_4C,and severely limits the application of B_4C powder. Compared with the traditional B_4C powder,the powder with high purity,low dimension and uniform particle size can effectively improve the sintering performance and fracture toughness of B_4C materials. Therefore,it is more meaningful to prepare B_4C powders with high purity,uniform size,small particle size,and high aspect ratio.However,it is difficult to synthesize B_4C powders because B_4C is composed of more than 90% covalent bonds and the kinetic and thermodynamic conditions of the synthesis process are complicated. Especially,it is difficult to synthesize B_4C powders with high performance and wide application fields by low cost and simple process requirements. Therefore,more and more researchers have improved the synthesis method in various ways to obtain B_4C powder with excellent performance,thereby improving the sintering properties of B_4C powder and improving fracture toughness,so as to meet more and more application fields and more demanding application environments.In recent years,many literatures reported that B_4C powders with high purity,low dimension and uniform particle size can be obtained by various methods. B_4C powders prepared by elemental synthesis method have small output but high purity in general. The minimum particle size of B_4C obtained by the most commonly used carbothermal reduction method in the industry is 20—30 nm. The fast and energy-saving self-propagating high-temperature synthesis method can obtain a sheet-like B_4C with a thickness of 10—50 nm. B_4C with special morphology such as rods and fibers is mainly synthesized by chemical vapor deposition. Nano-sized B_4C powders have also been obtained by some new synthetic methods such as solvothermal reduction,VLS growth,and particle beam synthesis. These latest achievements are mainly achieved by changing the types of raw materials,improving the quality of raw materials,using raw materials with different morphologies,using catalysts,and combining various methods. In addition,theoretical research on the B_4C generation process has also contributed to the development of various synthetic methods.The recent progress of synthesis methods of B_4C was reviewed,focusing on the development and research status of elemental synthesis,carbothermal reduction,self-propagating high-temperature synthesis,and chemical vapor deposition for the preparation of high-purity,low-dimensional B_4C. Additionally,the development directions in synthesis of B_4C were out looked.
引文
1 Kingery W D,Bowen H K,Uhlmann D R. Introduction to Ceramics,Higher Education Press,China,2010(in Chinese).金格瑞,鲍恩,乌尔曼.陶瓷导论,高等教育出版社,2010.
    2 Zhang X J. Synthesis and characterization of boron carbide precursor polymer and B-C ceramic microspheres. Master’s Thesis,Southwest University of Science and Technology,China,2016(in Chinese).张晓娟.聚碳/硼烷先驱体的合成及B-C陶瓷微球的制备与性能研究.硕士学位论文,西南科技大学,2016.
    3 Moskovskikh D O,Paramonov K A,Nepapushev A A,et al. Ceramics International,2017,43(11),8190.
    4 Zhang X,Zhang Z,Wen R,et al. Ceramics International,2018,44(2),2615.
    5 Cheng C,Reddy K M,Hirata A,et al. Journal of the European Ceramic Society,2017,37(15),4514.
    6 Moshtaghioun B M,García D G,Rodríguez A D. Materials&Design,2015,88,287.
    7 Wang H,Wang J L,Gou Y Z. Journal of Inorganic Materials,2017,32(8),785(in Chinese).王浩,王金龙,苟燕子.无机材料学报,2017,32(8),785.
    8 Thevenot F. Key Engineering Materials,1991,56-57,59.
    9 Asadikiya M,Zhang C,Rudolf C,et al. Ceramics International,2017,43(14),11182.
    10 Sedlák R,KovalˇcíkováA,Múdra E,et al. Journal of the European Ceramic Society,2017,37(12),3773.
    11 Dimitar D,Edward A. Comptes Rendus de Academie Bulgare des Sciences,2015,68(8),945.
    12 Shawgi N,Li S X,Wang S,et al. Ceramics International,2018,44(8),9887.
    13 Suri A K,Subramanian C,Sonber J K,et al. Metallurgical Reviews,2010,55(1),4.
    14 Domnich V,Reynaud S,Haber R A,et al. Journal of the American Ceramic Society,2011,94(11),3605.
    15 Zhang X,Zhang Z,Nie B,et al. Ceramics International,2018,44(6),7291.
    16 Turatti A M,Pereira A S. Ceramics International,2017,43(11),7970.
    17 Ma L,Xie K Y,Toksoy M F,et al. Materials Characterization,2017,134,274.
    18 Zhang M,Yuan T,Li R,et al. Ceramics International,2017,44(4),3571.
    19 Cimpoeru S,Crouch I G,Ryan S,et al. The science of armour materials,Woodhead Publishing in Materials,Amsterdam,2016.
    20 Farzaneh F,Golestanifard F,Sheikhaleslami M S,et al. Ceramics International,2015,41(10),13658.
    21 Ayfer,Toptan,Kerti,et al. Materials Letters,2014,128(1),224.
    22 Ebrahimi S,Heydari M S,Baharvandi H R,et al. International Journal of Refractory Metals&Hard Materials,2016,57,78.
    23 Murthy T S R C,Ankata S,Sonber J K,et al. Ceramics Silikaty,2018,62(1),15.
    24 Devi H V S,Swapna M S,Ambadas G,et al. Applied Physics A,2018,124(4),297.
    25 Li P,Jian L,Wang M L,et al. Nuclear Power Engineering,2012,33(s2),110(in Chinese).李蓓,简敏,王美玲,等.核动力工程,2012,33(s2),110.
    26 Krutskii Y L,Bannov A G,Sokolov V V,et al. Nanotechnologies in Russia,2013,8(3-4),191.
    27 Jiang G J,Xu J Y,Zhuang H R,et al. Ceramics International,2011,37(5),1689.
    28 Zhang S,Lu W Z,Wang C B,et al. Ceramics International,2012,38(2),895.
    29 Heian E M,Khalsa S K,Lee J W,et al. Journal of the American Ceramic Society,2010,87(5),779.
    30 Kharlamov A I,Kirillova N V,Kaverina S N. Theoretical&Experimental Chemistry,2003,39(3),147.
    31 Yamada K. Journal of the American Ceramic Society,2010,79(4),1113.
    32 Chang B,Gersten B L,Szewczyk S T,et al. Applied Physics A,2007,86(1),83.
    33 Chen S,Wang D Z,Huang J Y,et al. Applied Physics A,2004,79(7),1757.
    34 Zeng H,Kan Y M,Xv C M,et al. Journal of Inorganic Materials,2011,26 (10),1101(in Chinese).曾洪,阚艳梅,徐常明,等.无机材料学报,2011,26(10),1101.
    35 Song N N,Li X D. Journal of Crystal Growth,2017,481,11.
    36 Xv J. Preparation and characterization of three-dimensional network structure nano boron carbide. Master’s Thesis, Southwest University of Science and Technology,China,2016(in Chinese).徐娟.三维纳米网状结构碳化硼的制备及表征.硕士学位论文,西南科技大学,2016.
    37 Schwetz K A,Greim J. Ullmann’s Encyclopedia of Industrial Chemistry,Barbara E ed.,Wiley-VCH Verlag GmbH&Co. KGa A,Germany,2006,pp.219.
    38 Alizadeh A,Taheri-Nassaj E,Ehsani N. Journal of the European Ceramic Society,2004,24(10),3227.
    39 Watts J L,Talbot P C,Alarco J A,et al. Ceramics International,2016,43(2),2650.
    40 Najafi A,Golestani-Fard F,Rezaie H R,et al. Ceramics International,2012,38(5),3583.
    41 Shawgi N,Li S X,Wang S,et al. Journal of Sol-Gel Science and Technology,2017,82(2),1.
    42 Xu J,Liu X,Wang S Q,et al. Ceramics International,2017,43(18),16787.
    43 Merzhanov A G,Borovinskaya I P. Combustion Science&Technology,1975,10(5-6),195.
    44 Singh P,Singh B,Kumar M,et al. Ceramics International,2014,40(9),15331.
    45 Jia B R,Qin M L,Li H,et al. Materials Review A:Review Papers,2010,24(5),32(in Chinese).贾宝瑞,秦明礼,李慧,等.材料导报:综述篇,2010,24(5),32.
    46 Lee J H,Won C W,Joo S M,et al. Journal of Materials Science Letters,2000,19(11),951.
    47 Wang L L,Munir Z A,Holt J B. Journal of the American Ceramic Society,1995,78(3),756.
    48 Alkan M,Sonmez M S,Derin B,et al. Solid State Sciences,2012,14(11-12),1688.
    49 Amin P,Nourbakhsh A,Asgatian P,et al. Iranian Journal of Materials Science and Engineering,2016,13(3),12.
    50 Zhang L. Research on self-propagating high-temperature synthesis and sintering properties of fine B4C powder. Master’s Thesis,Wuhan University of Technology,China,2012(in Chinese).张力.自蔓延高温合成碳化硼超细粉体及其烧结性能研究.硕士学位论文,武汉理工大学,2012.
    51 Sharifi E M,Karimzadeh F,Enayati M H. Advanced Powder Technology,2011,22(3),354.
    52 Nikzad L,Ebadzadeh T,Vaezi M R,et al. Micro&Nano Letters,2012,7(4),366.
    53 Forouzan M R,Mousavian R T,Sharif T,et al. Journal of Thermal Analysis&Calorimetry,2015,122(2),579.
    54 Wang J L,Long F,Wang W M,et al. Ceramics International,2016,42(6),6969.
    55 Wang L L,Munir Z A,Holt J B. Scripta Metallurgica Et Materialia,1994,31(1),93.
    56 Nersisyan H H,Yoo B U,Joo S H,et al. Chemical Engineering Journal,2015,281,218.
    57 Atasoy A. International Journal of Refractory Metals&Hard Materials,2010,28(5),616.
    58 Berchmans L J,Mani V,Amalajyothi K. International Journal of SelfPropagating High-Temperature Synthesis,2009,18(1),60.
    59 And F F X,Bando Y. Journal of Physical Chemistry B,2004,108(23),7651.
    60 Andrievski R A. Russian Chemical Reviews,2012,81(6),549.
    61 Sezer A O,Brand J I. Materials Science&Engineering B,2001,79(3),191.
    62 Lopez-Quintas I,Oujja M,Sanz M,et al. Applied Surface Science,2015,328,170.
    63 Sun G D,Deng J L,Li H,et al. Rare Metal Materials&Engineering,2015,44(4),826.
    64 Oliveira J C,Paiva P,Oliveira M N,et al. Applied Surface Science,1999,138(1),159.
    65 Zeng B,Feng Z,Li S W,et al. Ceramics International,2009,35(5),1877.
    66 Chaudhari P,Singh A,Topkar A,et al. Nuclear Instruments&Methods in Physics Research,2015,779(3),33.
    67 Ma S F,Liang J,Zhao J F. Chinese Journal of Inorganic Chemistry,2009,25(6),1050(in Chinese).马淑芳,梁建,赵君芙,等.无机化学学报,2009,25(6),1050.
    68 Jazirehpour M,Alizadeh A. Journal of Physical Chemistry C,2009,113(5),1657.
    69 Dong B,Oyelade A,Nandagopal N,et al. Surface&Coatings Technology,2016,314,45.
    70 Santos M J,Silvestre A J,Conde O. Surface&Coatings Technology,2002,151-152,160.
    71 Shi L,Gu Y L,Chen L Y,et al. Solid State Communications,2003,128(1),5.
    72 Bao L H,Li C,Tian Y,et al. Chinese Physics B,2008,17(11),4247.
    73 Ronning C,Schwen D,Eyhusen S,et al. Surface&Coatings Technology,2002,158(3),382.
    74 Todorovic-markovic B,Draganici I,Vasiljevic-radovic D,et al. Applied Surface Science,2007,253(8),4029.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700