A descriptor of “material genes”: Effective atomic size in structural unit of ionic crystals
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A descriptor of “material genes”: Effective atomic size in structural unit of ionic crystals
  • 作者:CHEN ; Dong ; LI ; ShunNing ; JIE ; JianShu ; LI ; SiBai ; ZHENG ; ShiSheng ; WENG ; MouYi ; YU ; ChangCheng ; LI ; ShuCheng ; CHEN ; DaJun ; PAN ; Feng
  • 英文作者:CHEN Dong;LI ShunNing;JIE JianShu;LI SiBai;ZHENG ShiSheng;WENG MouYi;YU ChangCheng;LI ShuCheng;CHEN DaJun;PAN Feng;School of Advanced Materials, Shenzhen Graduate School, Peking University;
  • 英文关键词:ionic radii;;interatomic distance;;effective atomic size;;coordination environment;;structural units
  • 中文刊名:JEXG
  • 英文刊名:中国科学:技术科学(英文版)
  • 机构:School of Advanced Materials, Shenzhen Graduate School, Peking University;
  • 出版日期:2019-03-22 10:09
  • 出版单位:Science China(Technological Sciences)
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Key R&D Program of China(Grant No.2016YFB0700600);; the Shenzhen Science and Technology Research(Grant No.ZDSYS201707281026184);; the Guangdong Key-Lab Project(Grant No.2017B0303010130)
  • 语种:英文;
  • 页:JEXG201905017
  • 页数:7
  • CN:05
  • ISSN:11-5845/TH
  • 分类号:143-149
摘要
The atomic size of each element, described by the ionic radius, is one category of "material genes" and can facilitate our understanding of atomic arrangements in compounds. Most of the ionic radii currently used to measure the sizes of cations and anions in ionic crystals are derived from hard-sphere model based on the coordination numbers, or the soft-sphere model incorporating the effect of ionic polarization. Herein we take a first step towards a novel "effective atomic size"(EAS) model,which takes into consideration the impact of the types and number of neighboring atoms on the relationship between ionic radii and interatomic distances. Taking the binary compounds between Group IA/IIA and VIA/VIIA elements gathered from the latest databases as an example, we show that the proposed EAS model can yield excellent agreement between the predicted and the DFT-calculated interatomic distances, with deviation of less than 0.1 ?. A set of EAS radii for ionic crystals has been compiled and the role of coordination numbers, geometric symmetry and distortion of structural units has been examined. Thanks to its superior predictability, the EAS model can serve as a foundation to analyze the structure of newly-discovered compounds and to accelerate materials screening processes in the future works.
        The atomic size of each element, described by the ionic radius, is one category of "material genes" and can facilitate our understanding of atomic arrangements in compounds. Most of the ionic radii currently used to measure the sizes of cations and anions in ionic crystals are derived from hard-sphere model based on the coordination numbers, or the soft-sphere model incorporating the effect of ionic polarization. Herein we take a first step towards a novel "effective atomic size"(EAS) model,which takes into consideration the impact of the types and number of neighboring atoms on the relationship between ionic radii and interatomic distances. Taking the binary compounds between Group IA/IIA and VIA/VIIA elements gathered from the latest databases as an example, we show that the proposed EAS model can yield excellent agreement between the predicted and the DFT-calculated interatomic distances, with deviation of less than 0.1 ?. A set of EAS radii for ionic crystals has been compiled and the role of coordination numbers, geometric symmetry and distortion of structural units has been examined. Thanks to its superior predictability, the EAS model can serve as a foundation to analyze the structure of newly-discovered compounds and to accelerate materials screening processes in the future works.
引文
1 Shi S Q,Gao J,Liu Y,et al.Multi-scale computation methods:Their applications in lithium-ion battery research and development.Chin Phys B,2016,25:018212
    2 Liu Y,Zhao T,Ju W,et al.Materials discovery and design using machine learning.J Materiomics,2017,3:159-177
    3 Bragg W L.The arrangement of atoms in crystals.Philos Mag,1920,40:169-189
    4 Goldschmidt V M.Die gesetze der krystallochemie.Naturwissenschaften,1926,14:477-485
    5 Pauling L.The sizes of ions and the structure of ionic crystals.J Am Chem Soc,1927,49:765-790
    6 Slater J C.Atomic shielding constants.Phys Rev,1930,36:57-64
    7 Pauling L.The nature of the chemical bond.Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules.J Am Chem Soc,1931,53:1367-1400
    8 Zachariasen W H.A set of empirical crystal radii for ions with inert gas configuration.Z Für Krist-Cryst Mater,2015,80:137-153
    9 Ahrens L H.The use of ionization potentials Part 1.Ionic radii of the elements.GeoChim CosmoChim Acta,1952,2:155-169
    10 Slater J C.Atomic radii in crystals.J Chem Phys,1964,41:3199-3204
    11 Shannon R D,Prewitt C T.Effective ionic radii in oxides and fluorides.Acta Crystlogr B Struct Sci,1969,25:925-946
    12 Shannon R D.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.Acta Cryst A,1976,32:751-767
    13 Schweinfest R,Paxton A T,Finnis M W.Bismuth embrittlement of copper is an atomic size effect.Nature,2004,432:1008-1011
    14 Greaves G N,Gurman S J,Catlow C R A,et al.A structural basis for ionic diffusion in oxide glasses.Philos Mag A,2006,64:1059-1072
    15 Bishop S R,Perry N H,Marrocchelli D,et al.Electro-Chemo-Mechanics of Solids.Cambridge:Springer International Publishing,2017
    16 Shuttleworth R.The surface tension of solids.Proc Phys Soc A,1950,63:444-457
    17 Cordero B,Gómez V,Platero-Prats A E,et al.Covalent radii revisited.Dalton Trans,2008,40:2832-2838
    18 Pauling L.The Nature of the Chemical Bond.Ithaca:Cornell University Press,1960.260
    19 Gibbs G V,Ross N L,Cox D F,et al.Bonded radii and the contraction of the electron density of the oxygen atom by bonded interactions.JPhys Chem A,2013,117:1632-1640
    20 Holbrook J B,Khaled F M,Smith B C.Soft-sphere ionic radii for Group 1 and Group 2 metal halides and ammonium halides.J Chem Soc Dalton Trans,1978,12:1631-1634
    21 Collin R J,Smith B C.Ionic radii for Group 1 halide crystals and ionpairs.Dalton Trans,2005,4:702-705
    22 Lang P F,Smith B C.Ionic radii for Group 1 and Group 2 halide,hydride,fluoride,oxide,sulfide,selenide and telluride crystals.Dalton Trans,2010,39:7786-7791
    23 Lang P F,Smith B C.Electronegativity effects and single covalent bond lengths of molecules in the gas phase.Dalton Trans,2014,43:8016-8025
    24 Jain A,Ong S P,Hautier G,et al.Commentary:The Materials Project:A materials genome approach to accelerating materials innovation.APL Mater,2013,1:011002
    25 Jain A,Hautier G,Moore C J,et al.A high-throughput infrastructure for density functional theory calculations.Comput Mater Sci,2011,50:2295-2310
    26 Belsky A,Hellenbrandt M,Karen V L,et al.New developments in the inorganic crystal structure database(ICSD):Accessibility in support of materials research and design.Acta Cryst Sect A Found Cryst,2002,58:364-369
    27 Bergerhoff G,Hundt R,Sievers R,et al.The inorganic crystal structure data base.J Chem Inf Model,1983,23:66-69
    28 Gra?ulis S,Da?kevi?A,Merkys A,et al.Crystallography open database(COD):An open-access collection of crystal structures and platform for world-wide collaboration.Nucleic Acids Res,2012,40:D420-D427
    29 Cotton F A,Wilkinson G.Advanced Inorganic Chemistry.New York:Wiley,1988.6
    30 Pauling L.Soft-sphere ionic radii for alkali and halogenide ions.JChem Soc Dalton Trans,1980,645-645
    31 Batsanov S S.The atomic radii of the elements.Russ J Inorg Chem,1991,36:1694-1706
    32 Kresse G,Hafner J.Ab initio molecular dynamics for liquid metals.Phys Rev B,1993,47:558-561
    33 Kresse G,Furthmüller J.Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set.Phys Rev B,1996,54:11169-11186
    34 Kohn W,Sham L J.Self-consistent equations including exchange and correlation effects.Phys Rev,1965,140:A1133-A1138
    35 Khein A,Singh D J,Umrigar C J.All-electron study of gradient corrections to the local-density functional in metallic systems.Phys Rev B,1995,51:4105-4109
    36 dal Corso A,Pasquarello A,Baldereschi A,et al.Generalized-gradient approximations to density-functional theory:A comparative study for atoms and solids.Phys Rev B,1996,53:1180-1185
    37 Staroverov V N,Scuseria G E,Tao J,et al.Tests of a ladder of density functionals for bulk solids and surfaces.Phys Rev B,2004,69:075102
    38 Haas P,Tran F,Blaha P.Calculation of the lattice constant of solids with semilocal functionals.Phys Rev B,2009,79:085104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700