油气管道内检测新技术与装备的开发及应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development and application of new technologies and equipments for in-line pipeline inspection
  • 作者:胡铁华 ; 郭静波
  • 英文作者:Hu Tiehua;Guo Jingbo;Department of Electrical Engineering, Tsinghua University;Sichuan Energy Internet Research Institute, Tsinghua University;
  • 关键词:油气管道 ; 内检测 ; 缺陷 ; 漏磁 ; 动磁 ; 直流励磁磁场 ; 高频激励磁场 ; 混沌 ; 极低频 ; 信噪比
  • 英文关键词:Oil and gas pipeline;;In-line inspection;;Defect;;Magnetic leakage;;Dynamic magnetism;;DC exciting magnetic field;;High-frequency exciting magnetic field;;Chaos;;Extremely low frequency;;Signal-to-noise ratio(SNR)
  • 中文刊名:TRQG
  • 英文刊名:Natural Gas Industry
  • 机构:清华大学电机工程与应用电子技术系;清华四川能源互联网研究院;
  • 出版日期:2019-01-29 16:50
  • 出版单位:天然气工业
  • 年:2019
  • 期:v.39;No.303
  • 基金:国家重点研发计划重大科学仪器设备开发重点专项“深海油气管道内外检测与故障诊断装备开发与示范应用”(编号:2017YFF0108800)、国家重点研发计划公共安全风险防控与应急技术装备重点专项“油气长输管道及储运设施检验评价与安全保障技术”(编号:2016YFC0802200)
  • 语种:中文;
  • 页:TRQG201901020
  • 页数:7
  • CN:01
  • ISSN:51-1179/TE
  • 分类号:124-130
摘要
油气管道内检测是保障油气管道安全的最有效的技术措施之一,而近年来出现的高碳钢、大管径、高压力、高流速油气管道对内检测技术与装备提出了新的挑战。为此,在调研电磁内检测新技术、极低频微弱瞬态信号检测新技术以及油气管道内检测新装备工程应用的基础上,基于电磁信号的主动发射与接收实现金属缺陷的检测,研发出电磁控阵检测器新技术与装备;基于杜芬混沌振子对含噪信号进行检测,实现对噪声中的极低频信号的检测,研发出极低频瞬态微弱信号检测新方法与装备,并开展了实际检测工程验证。研究结果表明:(1)研发的电磁控阵内检测新技术,利用直流励磁磁场和高频激励磁场协同作用的机理,仅用小信号激励即可实现响应的摄动效果;(2)引入采集信息成分的压缩采样,可突破内检测器的速度瓶颈,使电磁控阵检测器的检测速度达到创世界记录的8 m/s;(3)研发的基于混沌的极低频微弱瞬态信号检测新方法,可突破高速运动条件下内检测器管外跟踪定位过程中接收信号微弱且持续时间短暂的技术瓶颈,将微弱瞬态信号实时检测的信噪比降低到-10 dB以下。结论认为,该新装备的优越性能已经在实际运行的油气管道检测工程中得到了检验,将为国内主干油气管道的安全运行提供技术支撑和设备保障。
        In-line inspection is one of the most effective technical measures to ensure the safety of oil and gas pipelines. However, the extensive application of oil and gas pipelines of high-carbon steel, large diameter, high pressure and high flow rate in recent years brings about new challenges to in-line inspection. In this paper, we investigated the engineering application of new technologies and equipments, including the in-line inspection technology based on electrocmagnetic detector array, the extremely low frequency transient weak signal detection technology and new in-line inspection equipments. Then, the new technology and equipment of electrocmagnetic detector array were developed by applying the active emission and receiving of electromagnetic signal to inspect the metallic defects. Finally, noisy signals were inspected on the basis of Duffing chaotic oscillator, and thus the inspection of extremely low frequency signals in the noise was realized. In addition, the new method and equipment of extremely low frequency transient weak signal detection were developed and verified in actual inspection engineering. And the following research results were obtained. First, the in-line inspection technology based on electrocmagnetic detector array uses the synergetic effect between DC exciting magnetic field and high-frequency exciting magnetic field, so a perturbation response can be realized even by small signal excitation. Second, with the introduction of a novel compressive sampling of acquisition information composition, the speed bottleneck of in-line detector is broken through, and a new world record of the inspection speed of the electrocmagnetic detector array is set up, i.e., 8 m/s. Third, under the condition of high-speed movement, the received signals of in-line detector are weak and temporary while tracking and positioning outside the pipeline. And by virtue of the extremely low frequency transient weak signal detection method based on chaos, this technical bottleneck is broken through, and the signalto-noise ratio(SNR) of transient weak signal in the process of real-time inspection is decreased below-10 dB. In conclusion, the superior performance of these new equipments has already been verified in the inspection engineering of in-service oil and gas pipelines. These research results will provide technical and equipment support for the safe operation of domestic main oil and gas pipelines.
引文
[1]耿丽媛.两种励磁方式漏磁内检测的简化试验对比[J].油气储运,2018,37(4):385-389.Geng Liyuan.Simplified test comparison of two excitation modes in MFL internal inspections[J].Oil&Gas Storage and Transportation,2018,37(4):385-389.
    [2]Zhang Lintao,Belblidia F,Cameron I,Sienz J,Boat M&Pearson N.Influence of specimen velocity on the leakage signal in magnetic flux leakage type nondestructive testing[J].Journal of Nondestructive Evaluation,2015,34(2):1-8.
    [3]Park GS&Park SH.Analysis of the velocity-induced eddy current in MFL type NDT[J].IEEE Transactions on Magnetics,2004,40(2):663-666.
    [4]Du Zhiye,Ruan Jiangjun,Peng Ying,Yu Shifeng,Zhang Yu,Gan Yan,et al.3-D FEM simulation of velocity effects on magnetic flux leakage testing signals[J].IEEE Transactions on Magnetics,2008,44(6):1642-1645.
    [5]Ditchburn RJ,Burke SK.Planar rectangular spiral coils in eddycurrent non-destructive inspection[J].NDT&E International,2005,38(8):690-700.
    [6]Donoho DL.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
    [7]蔡雄,郭静波,胡铁华,张志文,陈水平.铁磁管道用极低频磁发射机的逆向优化设计[J].仪器仪表学报,2014,35(3):634-641.Cai Xiong,Guo Jingbo,Hu Tiehua,Zhang Zhiwen&Chen Shuiping.Reverse optimization design of ELF magnetic transmitter for ferromagnetic pipeline[J].Chinese Journal of Scientific Instrument,2014,35(3):634-641.
    [8]王淳,郭静波,刘红旗,胡铁华.基于最小二乘的极低频微弱信号实时检测方法[J].仪器仪表学报,2009,30(12):2468-2473.Wang Chun,Guo Jingbo,Liu Hongqi&Hu Tiehua.Novel approach of real-time ELF weak signal detection based on least square algorithm[J].Chinese Journal of Scientific Instrument,2009,30(12):2468-2473.
    [9]纪健,李玉星,纪杰,敬华飞.声波传感技术在多相流管道泄漏检测中的应用[J].油气储运,2018,37(5):493-500.Ji Jian,Li Yuxing,Ji Jie&Jing Huafei.Application of acoustic sensing technology in the leakage detection of multiphase flow pipeline[J].Oil&Gas Storage and Transportation,2018,37(5):493-500.
    [10]杨理践,申晗,高松巍,刘斌.管道内检测器低频跟踪定位方法[J].油气储运,2018,37(6):613-619.Yang Lijian,Shen Han,Gao Songwei&Liu Bin.Low-frequency tracking and positioning method for pipeline internal detector[J].Oil&Gas Storage and Transportation,2018,37(6):613-619.
    [11]郭静波,谭博,蔡雄.基于反相双峰指数模型的微弱瞬态极低频信号的估计与检测[J].仪器仪表学报,2015,36(8):1682-1691.Guo Jingbo,Tan Bo&Cai Xiong.Estimation and detection of the weak transient ELF signal based on the phase inverting double-peak exponential model[J].Chinese Journal of Scientific Instrument,2015,36(8):1682-1691.
    [12]Wang Guanyu,Zheng Wei&He Sailing.Estimation of amplitude and phase of a weak signal by using the property of sensitive dependence on initial conditions of a nonlinear oscillator[J].Signal Processing,2002,82(1):103-115.
    [13]李玉星,刘翠伟,方丽萍,李雪洁.基于混沌振子的输气管道微泄漏音波信号处理方法[J].油气储运,2017,36(6):683-688.Li Yuxing,Liu Cuiwei,Fang Liping&Li Xuejie.An acoustic signal processing method on micro-leakages of natural gas pipelines based on the chaotic oscillator[J].Oil&Gas Storage and Transportation,2017,36(6):683-688.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700