金属薄板循环塑性强化模型及实验研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Cyclic Plastic Hardening Model and Experiment for Metal Sheets
  • 作者:宋炳毅 ; 孟宝 ; 万敏
  • 英文作者:SONG Bing-yi;MENG Bao;WAN Min;Beihang University;
  • 关键词:循环强化模型 ; 循环加载实验 ; 参数识别 ; 回弹预测
  • 英文关键词:cyclic hardening model;;cyclic loading test;;parameter identification;;springback prediction
  • 中文刊名:JMCX
  • 英文刊名:Journal of Netshape Forming Engineering
  • 机构:北京航空航天大学;
  • 出版日期:2019-05-10
  • 出版单位:精密成形工程
  • 年:2019
  • 期:v.11;No.60
  • 基金:国家自然科学基金(51605018,51875027)
  • 语种:中文;
  • 页:JMCX201903003
  • 页数:14
  • CN:03
  • ISSN:50-1199/TB
  • 分类号:34-47
摘要
金属薄板塑性成形及回弹预测精度在很大程度上取决于所采用的强化模型能否对材料变形行为准确描述。梳理了各向同性强化模型、随动强化模型、旋转强化模型、畸变强化模型以及各类微观强化模型,对不同模型的特点及局限性进行了分析。同时,总结并讨论了标定强化模型中材料参数的各类循环加载实验方法。针对强化模型参数识别的问题,总结了常用的参数标定方法,分析了影响识别精度的因素。最后,介绍了不同强化模型在回弹预测方面的应用并分析了影响预测精度的因素。
        The accuracy of plastic forming and springback prediction of metal sheet greatly depends on whether the hardening model can accurately describe the deformation behavior of the material. The isotropic hardening models, kinematic hardening models, rotational hardening models, distortional hardening models and various microscopic hardening models were summarized, and their characteristics and limitations were analyzed. Various cyclic tests for material parameters in the hardening model were summarized and discussed. Targeted to the parameter identification of hardening model, commonly used parameter identification methods for hardening models were summarized, and the factors affecting the identification accuracy were analyzed. Finally, the application of the hardening model in springback prediction was introduced and the factors affecting the prediction result were analyzed.
引文
[1]YOSHIDA F,UEMORI T.A Model of Large-strain Cyclic Plasticity Describing the Bauschinger Effect and Workhardening Stagnation[J].International Journal of Plasticity,2002,18(5):661-686.
    [2]PRAGER W.A New Method of Analyzing Stresses and Strains in Workhardening Plastic Solids[J].Journal of Applied Mechanics,1956:493-496.
    [3]ZIEGLER H.A Modification of Prager's Hardening Rule[J].Quarterly of Applied Mathematics,1959,17:55-65.
    [4]HODGE J P.Discussion of Prager(1956)[J].Journal of Applied Mechanics,1957,24(3):482-483.
    [5]MROZ Z.On Generalized Kinematic Hardening Rule with Memory of Maximal Prestress[J].Journal De Mecanique Appliquee,1981,5(3):241-260.
    [6]DAFALIAS Y F,POPOV E P.Plastic Internal Variables Formalism of Cyclic Plasticity[J].Journal of Applied Mechanics,1976,43(4):645.
    [7]IWAN W D.On a Class of Models for the Yielding Behavior of Continuous and Composite Systems[J].Journal of Applied Mechanics,1967,34(3):612.
    [8]PHILLIPS A,LEE C W.Yield Surfaces and Loading Surfaces Experiments and Recommendations[J].International Journal of Solids and Structures,1979,15(9):715-729.
    [9]DRUCKER D C,PALGEN L.On Stress-Strain Relations Suitable for Cyclic and Other Loading[J].Journal of Applied Mechanics,1981,48(3):479-485.
    [10]FREDERICK C O,ARMSTRONG P J.A Mathematical Representation of the Multiaxial Bauschinger Effect[J].Materials at High Temperatures,2007,24(1):1-26.
    [11]LEMAITRE J,CHABOCHE J L.Mechanics of Solid Materials[M].Cambridge:Cambridge University Press,1994.
    [12]KHAN A S,HUANG S.Continuum Theory of Plasticity M].New Jersey:John Wiley&Sons,1995.
    [13]CHUNG K,LEE M G,KIM D,et al.Spring-back Evaluation of Automotive Sheets Based on Isotropic-kinematic Hardening Laws and Non-quadratic Anisotropic Yield Functions:Part I:Theory and Formulation[J].International Journal of Plasticity,2005,21(5):861-882.
    [14]LEE M G,KIM D,KIM C,et al.Spring-back Evaluation of Automotive Sheets Based on Isotropic-kinematic Hardening Laws and Non-quadratic Anisotropic Yield Functions,Part III:Applications[J].International Journal of Plasticity,2005,21(5):915-953.
    [15]LEE M G,KIM D,KIM C,et al.A Practical Two-surface Plasticity Model and Its Application to Spring-back Prediction[J].International Journal of Plasticity,2007,23(7):1189-1212.
    [16]LEE M G,KIM S J,WAGONER R H,et al.Constitutive Modeling for Anisotropic/Asymmetric Hardening Behavior of Magnesium Alloy Sheets:Application to Sheet Springback[J].International Journal of Plasticity,2009,25(1):70-104.
    [17]GENG L,WAGONER R H.Springback Analysis with a Modified Hardening Model[J].SAE Transactions,2000:365-375.
    [18]SUN L,MUSZKA K,WYNNE B P,et al.The Effect of Strain Path Reversal on High-angle Boundary Formation by Grain Subdivision in a Model Austenitic Steel[J].Scripta Materialia,2011,64(3):280-283.
    [19]CHUN B,JINN J,LEE J.Modeling the Bauschinger Effect for Sheet Metals,Part I:Theory[J].International Journal of Plasticity,2002,18(5/6):571-595.
    [20]YOSHIDA F,UEMORI T.A Model of Large-strain Cyclic Plasticity and Its Application to Springback Simulation[J].International Journal of Mechanical Sciences,2003,45(10):1687-1702.
    [21]KIM K H,YIN J J.Evolution of Anisotropy under Plane Stress[J].Journal of the Mechanics and Physics of Solids,1997,45(5):841-851.
    [22]CHOI Y,HAN C S,LEE J K,et al.Modeling Multi-axial Deformation of Planar Anisotropic Elasto-plastic Materials,Part I:Theory[J].International Journal of Plasticity,2006,22(9):1745-1764.
    [23]WU H C.Anisotropic Plasticity for Sheet Metals Using the Concept of Combined Isotropic-kinematic Hardening[J].International Journal of Plasticity,2002,18(12):1661-1682.
    [24]FRAN?OIS M.A Plasticity Model with Yield Surface Distortion for Non Proportional Loading[J].International Journal of Plasticity,2001,17(5):703-717.
    [25]KURTYKA T,?YCZKOWSKI M.Evolution Equations for Distortional Plastic Hardening[J].International Journal of Plasticity,1996,12(2):191-213.
    [26]HILL R,HECKER S S,STOUT M G.An Investigation of Plastic Flow and Differential Work Hardening in Orthotropic Brass Tubes under Fluid Pressure and Axial Load[J].International Journal of Solids and Structures,1994,31(21):2999-3021.
    [27]ORTIZ M,POPOV E P.Distortional Hardening Rules for Metal Plasticity[J].Journal of Engineering Mechanics,1983,109(4):1042-1057.
    [28]WU H C.On Stress Rate and Plasticity Constitutive Equations Referred to a Body-fixed Coordinate System[J].International Journal of Plasticity,2007,23(9):1486-1511.
    [29]WU H C.On Finite Plastic Deformation of Anisotropic Metallic Materials[J].International Journal of Plasticity,2003,19(1):91-119.
    [30]BARLAT F,GRACIO J J,LEE M G,et al.An Alternative to Kinematic Hardening in Classical Plasticity[J].International Journal of Plasticity,2011,27(9):1309-1327.
    [31]PEETERS B,KALIDINDI S,VAN H P,et al.A Crystal Plasticity Based Work-hardening/softening Model for Bcc Metals under Changing Strain Paths[J].Acta Materialia,2000,48(9):2123-2133.
    [32]BAYLEY C,BREKELMANS W,GEERS M.A Comparison of Dislocation Induced Back Stress Formulations in Strain Gradient Crystal Plasticity[J].International Journal of Solids and Structures,2006,43(24):7268-7286.
    [33]MUGHRABI H.Deformation-induced Long-range Internal Stresses and Lattice Plane Misorientations and the Role of Geometrically Necessary Dislocations[J].Philosophical Magazine,2006,86(25/26):4037-4054.
    [34]KITAYAMA K,TOMéC,RAUCH E,et al.A Crystallographic Dislocation Model for Describing Hardening of Polycrystals during Strain Path Changes.Application to Low Carbon Steels[J].International Journal of Plasticity,2013,46:54-69.
    [35]WEN W,BORODACHENKOVA M,TOMéC,et al.Mechanical Behavior of Mg Subjected to Strain Path Changes:Experiments and Modeling[J].International Journal of Plasticity,2015,73:171-183.
    [36]TEODOSIU C,HU Z.Evolution of the Intragranular Microstructure at Moderate and Large Strains:Modelling and Computational Significance[J].Proceedings of NUMIFORM'95,1995:173-182.
    [37]ZECEVIC M,KORKOLIS Y P,KUWABARA T,et al.Dual-phase Steel Sheets under Cyclic Tension-compression to Large Strains:Experiments and Crystal Plasticity Modeling[J].Journal of the Mechanics and Physics of Solids,2016,96:65-87.
    [38]WEN W,BORODACHENKOVA M,TOMéC,et al.Mechanical Behavior of Low Carbon Steel Subjected to Strain Path Changes:Experiments and Modeling[J].Acta Materialia,2016,111:305-314.
    [39]YAPICI G,BEYERLEIN I,KARAMAN I,et al.Tension-compression Asymmetry in Severely Deformed Pure Copper[J].Acta Materialia,2007,55(14):4603-4613.
    [40]KIM J H,KIM D,BARLAT F,et al.Crystal Plasticity Approach for Predicting the Bauschinger Effect in Dual-phase Steels[J].Materials Science and Engineering:A,2012,539:259-270.
    [41]LI L,SHEN L,PROUST G.A Texture-based Representative Volume Element Crystal Plasticity Model for Predicting Bauschinger Effect during Cyclic Loading[J].Materials Science and Engineering:A,2014,608:174-183.
    [42]KHAN S M,ZBIB H M,HUGHES D A.Modeling Planar Dislocation Boundaries Using Multi-scale Dislocation Dynamics Plasticity[J].International Journal of Plasticity,2004,20(6):1059-1092.
    [43]LIU Z,LIU X,ZHUANG Z,et al.A Multi-scale Computational Model of Crystal Plasticity at Submicron-to-nanometer Scales[J].International Journal of Plasticity,2009,25(8):1436-1455.
    [44]ZHOU C,LESAR R.Dislocation Dynamics Simulations of the Bauschinger Effect in Metallic Thin Films[J].Computational Materials Science,2012,54:350-355.
    [45]GAU J T,KINZEL G L.An Experimental Investigation of the Influence of the Bauschinger Effect on Springback Predictions[J].Journal of Materials Processing Technology,2001,108(3):369-375.
    [46]YOSHIDA F,UEMORI T,FUJIWARA K.Elastic-plastic Behavior of Steel Sheets under In-plane Cyclic Tension-compression at Large Strain[J].International Journal of Plasticity,2002,18(5/6):633-659.
    [47]BOGER R K,WAGONER R H,BARLAT F,et al.Continuous,Large Strain,Tension/compression Testing of Sheet Material[J].International Journal of Plasticity,2005,21(12):2319-2343.
    [48]MAGARGEE J,CAO J,ZHOU R,et al.Characterization of Tensile and Compressive Behavior of Microscale SheetMetals Using a Transparent Microwedge Device[J].Journal of Manufacturing Science and Engineering,Transactions of the ASME,2011,133(6):064501.
    [49]CAO J,LEE W,CHENG H S,et al.Experimental and Numerical Investigation of Combined Isotropic-KineticHardening Behavior of Sheet Metals[J].International Journal of Plasticity,2009,25(5):942-972.
    [50]KUWABARA T,NAGATA K,NAKAKO T.Measurement and Analysis of the Bauschinger Effect of Sheet Metals Subjected to In-plane Stress Reversals[J].Proceedings of AMPT,2001,1:407-412.
    [51]ZHAO K M,LEE J K.Finite Element Analysis of the Three-Point Bending of Sheet Metals[J].Journal of Materials Processing Technology,2002,122(1):6-11.
    [52]YOSHIDA F,URABE M,TOROPOV V V.Identification of Material Parameters in Constitutive Model for Sheet Metals from Cyclic Bending Tests[J].International Journal of Mechanical Sciences,1998,40(2/3):237-249.
    [53]ZANG SL,LEE MG,SUN L,et al.Measurement of the Bauschinger Behavior of Sheet Metals by Three-point Bending Springback Test with Pre-strained Strips[J].International Journal of Plasticity,2014,59:84-107.
    [54]CHOI J H,ZANG S L,LEE M G,et al.Determining the Coefficients of a Homogeneous Anisotropic Hardening Model for Ultrathin Steel Sheets[J].International Journal of Mechanical Sciences,2019,157/158:428-438.
    [55]MIYAUCHI K.A Proposal for a Planar Simple Shear Test in Sheet Metals[J].Scientific Papers of the Institute of Physical and Chemical Research,1984,78(3):27-40.
    [56]G'SELL C,BONI S,SHRIVASTAVA S.Application of the Plane Simple Shear Test for Determination of the Plastic Behaviour of Solid Polymers at Large Strains[J].Journal of Materials Science,1983,18(3):903-918.
    [57]RICKHEY F,KIM M,LEE H,et al.Evaluation of Combined Hardening Coefficients of Zircaloy-4 Sheets by Simple Shear Test[J].Materials&Design,2015,65:995-1000.
    [58]THUILLIER S,MANACH P Y.Comparison of the Work-hardening of Metallic Sheets Using Tensile and Shear Strain Paths[J].International Journal of Plasticity,2009,25(5):733-751.
    [59]BOUVIER S,HADDADI H,LEVéE P,et al.Simple Shear Tests:Experimental Techniques and Characterization of the Plastic Anisotropy of Rolled Sheets at Large Strains[J].Journal of Materials Processing Technology,2006,172(1):96-103.
    [60]BOUVIER S,GARDEY B,HADDADI H,et al.Characterization of the Strain-induced Plastic Anisotropy of Rolled Sheets by Using Sequences of Simple Shear and Uniaxial Tensile Tests[J].Journal of Materials Processing Technology,2006,174(1/2/3):115-126.
    [61]PHAM C H,ADZIMA F,CO?R J,et al.Anti-Buckling Device for Ultra-Thin Metallic Sheets Under Large and Reversed Shear Strain Paths[J].Experimental Mechanics,2017,57(4):593-602.
    [62]牛超,臧顺来.基于反向简单剪切变形和数字散斑相关法的薄板包申格效应测试[J].机械工程材料,2013,37(12):96-100.NIU Chao,ZANG Shun-lai.A Measurement of Bauschinger Effect of Thin Sheets Based on Reverse Simple Shear Deformation and Digital Speckle Correlation[J].Materials for Mechanical Engineering,2013,37(12):96-100.
    [63]臧顺来,张郑英俊.一种用于薄板简单剪切加载下力学性能测试的装置:中国,102095647a[P].2011.ZANG Shun-lai,ZHANG Zheng-ying-jun.Device for Testing Mechanical Properties under Shear Loading of thin Plates:China,102095647a[P].2011.
    [64]余海燕,李佳旭,王友.剪切夹具设计及铝合金循环剪切变形行为[J].精密成形工程,2017,9(6):157-162.YU Hai-yan,LI Jia-xu,WANG You.Design of Shear Fixture and Cyclic Shear Deformation Behavior of Aluminum Alloys[J].Journal of Netshape Forming Engineering,2017,9(6):157-162.
    [65]MERKLEIN M,BIASUTTI M.Forward and Reverse Simple Shear Test Experiments for Material Modeling in FormingSimulations[C]//10th International Conference on Technology of Plasticity(ICTP),Aachen,Germany,Sept,2011.
    [66]RAUCH E.Plastic Anisotropy of Sheet Metals Determined by Simple Shear Tests[J].Materials Science and Engineering:A,1998,241(1/2):179-183.
    [67]YIN Q,SOYARSLAN C,GüNER A,et al.A Cyclic Twin Bridge Shear Test for the Identification of Kinematic Hardening Parameters[J].International Journal of Mechanical Sciences,2012,59(1):31-43.
    [68]YIN Q,ZILLMANN B,SUTTNER S,et al.An Experimental and Numerical Investigation of Different Shear Test Configurations for Sheet Metal Characterization[J].International Journal of Solids and Structures,2014,51(5):1066-1074.
    [69]AN Y G,VEGTER H,HEIJNE J.Development of Simple Shear Test for the Measurement of Work Hardening[J].Journal of Materials Processing Technology,2009,209(9):4248-4254.
    [70]RICKHEY F,KIM M,LEE H,et al.Evaluation of Combined Hardening Coefficients of Zircaloy-4 Sheets by Simple Shear Test[J].Materials&Design(1980-2015),2015,65:995-1000.
    [71]FU J,BARLAT F,KIM J H,et al.Identification of Nonlinear Kinematic Hardening Constitutive Model Parameters Using the Virtual Fields Method for Advanced High Strength Steels[J].International Journal of Solids and Structures,2016,102/103:30-43.
    [72]ZHAO K M,LEE J K.Generation of Cyclic Stress-strain Curves for Sheet Metals[J].American Society of Mechanical Engineers,Manufacturing Engineering Division,MED,2000,11:667-674.
    [73]ZHAO K M,LEE J K.On Simulation of Bend/Reverse Bend of Sheet Metals[J].American Society of Mechanical Engineers,Manufacturing Engineering Division,MED,1999,10:929-933.
    [74]EGGERTSEN P A,MATTIASSON K.On the Modelling of the Bending-unbending Behaviour for Accurate Springback Predictions[J].International Journal of Mechanical Sciences,2009,51(7):547-563.
    [75]LI Y,HE J,GU B,et al.Identification of Advanced Constitutive Model Parameters Through Global Optimization Approach for DP780 Steel Sheet[J].Procedia Engineering,2017,207:125-130.
    [76]YOSHIDA F.Material Models for Accurate Simulation of Sheet Metal Forming and Springback[C]//AIP Conference Proceedings,AIP,2010,1252(1):71-78.
    [77]ZANG SL,LEE MG,HOON K J.Evaluating the Significance of Hardening Behavior and Unloading Modulus under Strain Reversal in Sheet Springback Prediction[J].International Journal of Mechanical Sciences,2013,77:194-204.
    [78]FURUKAWA T,SUGATA T,YOSHIMURA S,et al.An Automated System for Simulation and Parameter Identification of Inelastic Constitutive Models[J].Computer Methods in Applied Mechanics and Engineering,2002,191(21):2235-2260.
    [79]TOROS S.Parameters Determination of Yoshida Uemori Model Through Optimization Process of Cyclic Tension-Compression Test and V-Bending Springback[J].Latin American Journal of Solids and Structures,2016,13(10):1893-1911.
    [80]KESSLER L,GERLACH J,AYDIN M,et al.Springback Simulation with Complex Hardening Material Models[C]//Proceedings of LS-DYNA Conference,Bamberg,Germany,2008.
    [81]EGGERTSEN P A.On the Identification of Kinematic Hardening Material Parameters for Accurate Springback Predictions[J].International Journal of Material Forming,2011,4(2):103-120.
    [82]YOSHIDA F.Inverse Approach to Identification of Material Parameters of Cyclic Elasto-plasticity for Component Layers of a Bimetallic Sheet[J].International Journal of Plasticity,2003,19(12):2149-2170.
    [83]HASSAN H U,TRAPH?NER H,GüNER A,et al.Accurate Springback Prediction in Deep Drawing UsingPre-strain Based Multiple Cyclic Stress-strain Curves in Finite Element Simulation[J].International Journal of Mechanical Sciences,2016,110:229-241.
    [84]GU B,HE J,LI S,et al.Cyclic Sheet Metal Test Comparison and Parameter Calibration for Springback Prediction of Dual-phase Steel Sheets[J].Journal of Manufacturing Science and Engineering,2017,139(9):091010.
    [85]VLADIMIROV I N,PIETRYGA M P,REESE S.Prediction of Springback in Sheet Forming by a New Finite StrainModel with Nonlinear Kinematic and Isotropic Hardening[J].Journal of Materials Processing Technology,2009,209(8):4062-4075.
    [86]ZAJKANI A,HAJBARATI H.Investigation of the Variable Elastic Unloading Modulus Coupled with Nonlinear Kinematic Hardening in Springback Measuring of Advanced High-Strength Steel in U-shaped Process[J].Journal of Manufacturing Processes,2017,25:391-401.
    [87]TAHERIZADEH A,GHAEI A,GREEN D E,et al.Finite Element Simulation of Springback for a Channel Draw Process with Drawbead Using Different Hardening Models[J].International Journal of Mechanical Sciences,2009,51(4):314-325.
    [88]GENG L,WAGONER R H.Springback Analysis with a Modified Hardening Model[R].SAE Technical Paper,2000.
    [89]TAHERIZADEH A,GREEN D E,GHAEI A,et al.ANon-associated Constitutive Model with Mixed Iso-kinematic Hardening for Finite Element Simulation of Sheet Metal Forming[J].International Journal of Plasticity,2010,26(2):288-309.
    [90]CHUN B K,KIM H Y,LEE J K.Modeling the Bauschinger Effect for Sheet Metals,Part II:Applications[J].International Journal of Plasticity,2002,18(5/6):597-616.
    [91]JULSRI W,SURANUNTCHAI S,UTHAISANGSUK V.Study of Springback Effect of AHS Steels Using a Microstructure Based Modeling[J].International Journal of Mechanical Sciences,2018,135:499-516.
    [92]HADDAG B,BALAN T,ABED-MERAIM F.Investigation of Advanced Strain-path Dependent Material Models for Sheet Metal Forming Simulations[J].International Journal of Plasticity,2007,23(6):951-979.
    [93]CHONGTHAIRUNGRUANG B,UTHAISANGSUK V,SURANUNTCHAI S,et al.Springback Prediction in Sheet Metal Forming of High Strength Steels[J].Materials&Design,2013,50:253-266.
    [94]OLIVEIRA M C,ALVES J L,CHAPARRO B M,et al.Study on the Influence of Work-hardening Modeling in Springback Prediction[J].International Journal of Plasticity,2007,23(3):516-543.
    [95]LIN J,HOU Y,MIN J,et al.Effect of Constitutive Model on Springback Prediction of MP980 and AA6022-T4[J].International Journal of Material Forming,2019:1-13.
    [96]CHOI J,LEE J,BONG H J,et al.Advanced Constitutive Modeling of Advanced High Strength Steel Sheets for Springback Prediction after Double Stage U-draw Bending[J].International Journal of Solids and Structures,2018,151:152-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700