用户名: 密码: 验证码:
中试规模耐氯抗菌海水反渗透膜制备
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pilot-scale preparation technology of seawater reverse osmosis membrane with improved chlorine resistance and antimicrobial property
  • 作者:韩向磊 ; 王志 ; 李旭 ; 刘莹莹 ; 李保安 ; 王纪孝
  • 英文作者:HAN Xianglei;WANG Zhi;LI Xu;LIU Yingying;LI Baoan;WANG Jixiao;Chemical Engineering Research Center,School of Chemical Engineering and Technology,Tianjin University;Tianjin Key Laboratory of Membrane Science and Desalination Technology;State Key Laboratory of Chemical Engineering,Tianjin University;Tianjin Collaborative Innovation Center of Chemical Science and Engineering;
  • 关键词:耐氯 ; 抗菌 ; 海因衍生物 ; 反渗透膜 ; 中试研究 ; 膜制备 ; 海水淡化
  • 英文关键词:chlorine resistance;;anti-microbial;;hydantoin derivative;;reverse osmosis membrane;;pilot-scale study;;membrane preparation;;seawater desalination
  • 中文刊名:MKXY
  • 英文刊名:Membrane Science and Technology
  • 机构:天津大学化工学院化学工程研究所;天津市膜科学与海水淡化技术重点实验室;化学工程联合国家重点实验室天津大学;天津化学化工协同创新中心;
  • 出版日期:2019-02-25
  • 出版单位:膜科学与技术
  • 年:2019
  • 期:v.39;No.194
  • 基金:海洋公益性行业科研专项(201405009)
  • 语种:中文;
  • 页:MKXY201901021
  • 页数:8
  • CN:01
  • ISSN:62-1049/TB
  • 分类号:97-104
摘要
为解决反渗透膜生物污染和易被氯化问题,开发了中试规模耐氯抗菌海水反渗透膜制备技术。研制了具有二次界面聚合单元的幅宽0.4 m反渗透膜生产线.利用该生产线将海因衍生物聚3-烯丙基-5,5-二甲基海因-共-乙烯基胺引入到膜表面,实现了膜片快速改性.最优条件下,改性膜较未改性膜具有高的选择透过性能和高且可再生的耐氯抗菌性能.利用所制膜卷制了2514型膜元件.测试结果表明,改性膜元件具有高的选择透过性能和可再生的耐氯抗菌性能.利用小型海水淡化装置进行了36天的连续运行考察,结果显示,改性膜元件具有良好的运行稳定性.该研究结果为工业规模耐氯抗菌反渗透膜的制备奠定了基础.
        To solve the problem of biofouling and chlorination of reverse osmosis membrane, a pilot-scale preparation technology of seawater reverse osmosis membrane with improved chlorine resistance and antimicrobial property was developed. A 0.4 m wide continuous membrane production line with a secondary interfacial polymerization unit was designed and manufactured. And, the membrane production process was performed to introduce the hydantoin derivative poly(3-allyl-5,5-dimethylhydantoin-co-vinylamine) [P(ADMH-co-VAm)] to the surface of membrane to achieve a rapid modification of the membrane sheet. Under the optimal condition, the modified membrane showed higher permselectivity, as well as higher and regenerable chlorine resistance and antimicrobial property as compared with the virgin membrane. The 2514 spiral-wound membrane elements were fabricated with the membrane prepared. The testing results demonstrated that the modified membrane element exhibited high permselectivity and regenerable chlorine resistance and antimicrobial property. A 36 d continuous operation experiment was carried out using a small seawater desalination apparatus. The results showed that the modified membrane element showed good operational stability. The results of this research lay a foundation for practical industrial production of seawater reverse osmosis membrane with improved chlorine resistance and antimicrobial property.
引文
[1] Elimelech M, Phillip W A. The future of seawater desalination: Energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717.
    [2] Misdan N, Lau W J, Ismail A F. Seawater Reverse Osmosis (SWRO) desalination by thin-film composite membrane-Current development, challenges and future prospects[J]. Desalination, 2012, 287: 228-237.
    [3] Shenvi S S, Isloor A M, Ismail A F. A review on RO membrane technology: Developments and challenges[J]. Desalination, 2015, 368: 10-26.
    [4] 徐国荣, 王生辉, 赵河立, 等. 海水淡化聚酰胺复合反渗透膜的发展趋势与展望[J]. 膜科学与技术, 2015, 35(5): 122-126.
    [5] Flemming H C,Schaule G,Griebe T,et al.Biofouling-the Achilles heel of membrane processes[J]. Desalination, 1997, 113(2/3): 215-225.
    [6] Zhang R, Liu Y, He M, et al. Antifouling membranes for sustainable water purification: strategies and mechanisms[J]. Chem Soc Rev, 2016, 45(21): 5888-5924.
    [7] 郑猛, 吴青芸, 周浩媛, 等. 海水淡化反渗透膜微生物污染及防控研究进展[J]. 膜科学与技术, 2015, 35(1): 123-130.
    [8] Kang G D, Gao C J, Chen W D, et al. Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane[J]. J Membr Sci, 2007, 300(1/2): 165-171.
    [9] Do V T, Tang C Y, Reinhard M, et al. Degradation of polyamide nanofil-tration and reverse osmosis membranes by hypochlorite[J]. Environ Sci Technol, 2012, 46(2): 852-859.
    [10] Yu S, Liu M, Lü Z, et al. Aromatic-cycloaliphatic polyamide thin-film composite membrane with improved chlorine resistance prepared from m-phenylenediamine-4-methyl and cyclohexane-1, 3, 5-tricarbonyl chloride[J]. J Membr Sci, 2009, 344: 155-164.
    [11] Kim Y J, Lee K S, Jeong M H, et al. Highly chlorine-resistant end-group crosslinked sulfonated-fluorinated poly (arylene ether) for reverse osmosis membrane[J]. J Membr Sci, 2011, 378(1/2): 512-519.
    [12] Inukai S, Cruz-Silva R, Ortiz-Medina J, et al. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube polyamide nanocomposite[J]. Sci Rep, 2015, 5: 13562-13571.
    [13] Park S H, Ko Y S, Park S J, et al. Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties[J], J Membr Sci, 2016, 499: 80-91.
    [14] Nikkola J, Liu X, Li Y, et al., Surface modification of thin film composite RO membrane for enhanced anti-biofouling performance[J]. J Membr Sci, 2013, 444: 192-200.
    [15] Wei X, Wang Z, Zhang Z, et al. Surface modification of commercial aromatic polyamide reverse osmosis membranes by graft polymerization of 3-allyl-5, 5-dimethylhydantoin[J]. J Membr Sci, 2010, 351: 222-233.
    [16] X. Wei, Z. Wang, J. Chen, et al. A novel method of surface modification on thin-film-composite reverse osmosis membrane by grafting hydantoin derivative[J]. J Membr Sci, 2010, 346: 152-162.
    [17] Xu J, Wang Z, Yu L, et al. A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties[J]. J Membr Sci, 2013, 435: 80-91.
    [18] Wang Y, Wang Z, Wang J. Lab-scale and pilot-scale fabrication of amine-functional reverse osmosis membrane with improved chlorine resistance and antimicrobial property[J]. J Membr Sci, 2018, 554: 221-231.
    [19] 周艺璇, 王志, 董晨曦, 等. 双胍基化聚乙烯胺改性制备抗生物污染反渗透膜[J]. 化工学报, 2018, 69(2): 858-865.
    [20] Fujiwara N, Matsuyama H. Optimization of the intermittent chlorine injection (ICI) method for seawater desalination RO plants[J]. Desalination, 2008, 229: 231-244.
    [21] Fujiwara N, Matsuyama H. Elimination of biological fouling in seawater reverse osmosis desalination plants[J]. Desalination, 2008, 227: 295-305.
    [22] Zhou Y, Yu S, Gao C, et al. Surface modification of thin film composite polyamide membranes by electrostatic self deposition of polycations for improved fouling resistance[J], Sep Purif Technol, 2009, 66: 287-294.
    [23] Do V T, Tang C Y, Reinhard M, et al. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane ╋ Mechanisms and implications[J]. Environ Sci Technol, 2012, 46(24): 13184-13192.
    [24] Soice N P, Maladono A C, Takigawa D Y, et al. Oxidative degradation of polyamide reverse osmosis membranes: studies of molecular model compounds and selected membranes[J]. J Appl Polym Sci, 2003, 90(5): 1173-1184.
    [25] Kwon Y N. Change of surface properties and performance due to chlorination of crosslinked polyamide membranes[D]. Stanford University, 2006.
    [26] Zhai X, Meng J, Li R, et al. Hypochlorite treatment on thin film composite RO membrane to improve boron removal performance[J]. Desalination, 2011, 274(1/3): 136-143.
    [27] Raval H D, Trivedi J J, Joshi S V, et al. Flux enhancement of thin film composite RO membrane by controlled chlorine treatment[J]. Desalination, 2010, 250(3): 945-949.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700