高碱松木屑与高氯废物共水热脱碱工艺
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Process for Removing Alkalis by Co-hydrothermal Treatment of High Alkaline Pine Sawdust With High Chlorinated Waste
  • 作者:黄能 ; 雷萌 ; 王浩 ; 赵培涛
  • 英文作者:HUANG Neng;LEI Meng;WANG Hao;ZHAO Pei-Tao;School of Electrical and Power Engineering,China University of Mining and Technology;School of Information and Control Engineering,China University of Mining and Technology;National Engineering Research Center for Coal Preparation and Purification,China University of Mining and Technology;
  • 关键词:生物质 ; PVC ; 水热碳化 ; 碱金属 ; 碱土金属
  • 英文关键词:biomass;;PVC;;hydrothermal carbonization;;alkali metals;;alkaline earth metals
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:中国矿业大学电气与动力工程学院;中国矿业大学信息与控制工程学院;国家煤加工与洁净化工程技术研究中心;
  • 出版日期:2019-03-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:江苏省自然科学基金资助项目(No.BK20150174,No.BK20140215);; 中国博士后基金资助项目(No.2015M581900);; 国家自然科学基金项目(No.51706240)
  • 语种:中文;
  • 页:GCRB201903035
  • 页数:10
  • CN:03
  • ISSN:11-2091/O4
  • 分类号:230-239
摘要
本文以聚氯乙烯(polyvinyl chloride,PVC)和松木屑为原料,开展共水热实验,借助SEM、FTIR和ICP-OES等手段研究了松木屑中碱/碱土金属迁移特性和水热炭燃料性能。元素分析和工业分析的结果表明,温度是影响水热炭性能的最重要因素,其次是水热时间,而木屑粒径几乎无影响。温度为260℃时,碳含量保持在73.75%左右。本文研究范围内,水热条件对碱及碱土金属脱除率无明显影响,所测元素钾(K)、钠(Na)、钙(Ca)、镁(Mg)在水热炭中含量的变化顺序依次为:钙(Ca)>钾(K)>镁(Mg)>钠(Na)。温度由220℃增加至260℃时,钙(Ca)、镁(Mg)、钾(K)、钠(Na)的脱除率分别增加了1.02%、2.77%、4.10%和9.22%。与松木屑水热空白实验对比,添加PVC增强了反应体系的酸性,促进了木屑水热脱除碱/碱土金属。水热温度为260℃时,钙(Ca)、镁(Mg)、钾(K)、钠(Na)的最高脱除率由约26.59%上升到98.59%,93.17%,86.27%和85.84%。水热温度越高,半纤维素、纤维素和木质素分解度越高,生成的气体也越多,生成的水热炭的孔隙结构越发达,为碱金属的逸出提供了良好的通道。本文研究结果可为含氯有机废物和高碱固体燃料协同提质提供参考。
        In this work, the PVC(polyvinyl chloride) and pine sawdust were utilized as raw materials to investigate the AAEMs behavior during the co-Hydrothermal treatment(co-HTT). The experimental parameters include the co-HTT temperature(220, 240 and 260℃), the residence time(30, 60 and 90 min), and the particle size of pine sawdust(0.22~0.49, 0.49~0.60, and 0.60~0.90 mm).The SEM and FTIR were adopted to characterize the morphological structures of the hydrochars,and the ICP-OES was used to measure the inorganic content to evaluate the AAEMs' behavior. The results show that the co-HTT temperature was the most significant factor from the viewpoint of the hydrochar fuel performance, followed by the residence time. The particle size of the pine sawdust has little influence on the properties of hydrochar. At a temperature of 260℃, the carbon content of the hydochars was around 73.75%. In the range studied in this work, the removal efficiencies(RE) of the AAEMs varied little with the co-HTT operating conditions. The RE of Ca, Mg, K, and Na were only increased by 1.02%, 2.77%, 4.10% and 9.22%, respectively, when the temperature was increased from 220 ℃ to 260℃. The variation of AAEMs in these hydrochars followed the order as Ca> K>Mg>Na. The addition of PVC into pine sawdust enhanced the acidity of the reaction system and promoted the removal efficiency(RE) of AAEMs from pine sawdust. At a temperature of 260℃,the highest RE of Ca, Mg, K, and Na was increased from about 26.59% to 98.59%, 93.17%, 86.27%and 85.84%, respectively. Higher temperature promoted the decomposition of cellulose, heminellulose,and lignin, correspondingly improved the generation of gas products, which generated hydrochar with more pore structures providing channels for the escape of alkali metal. As a result, the RE of AAEMs was increased. This work has some referential value for the clean fuel production from organic-chlorinated wastes and high-alkali fuels by co-HTT.
引文
[1]刘军利.木质纤维类生物质定向热解行为研究[D].北京:中国林业科学研究院,2011LIU Junli. Study on Directed Pyrolysis of LignocelluloseBiomass[D]. Beijing:Chinese Academy of Forestry, 2011
    [2]江龙.生物质热解气化过程中内在碱金属、碱土金属的迁移及催化特性研究[D].武汉:华中科技大学,2013JIANG Long. Migration and Catalytic Characteristic of Intrinsic AAEMs During Pysolysis and Gasification Process of Biomass[D]. Wuhan:Huazhong University of Science and Technology. 2013
    [3]孙宏伟,吕薇,李瑞扬.生物质燃烧过程中的碱金属问题研究[J].节能技术,2009(1):24-26, 48SUN Hongwei, LU Wei, LI Ruiyang. Study on Problems of Alkali Metal During Straw Combustion[J]. Energy Conservation Technology, 2009(1):24-26
    [4]李田,赵培涛,祝飞.松木屑水热提质过程及其燃烧特性[J].过程工程学报,2016(5):19-826LI Tian, ZHAO Peitao, ZHU Fei. Hydrothermal Upgrading and Combustion Characteristics of Pine Sawdust[J]. The Chinese Journal of Process Engineering, 2016(5):819-826
    [5] Fatehi H, LI Z S, Bai X S, et al. Modeling of Alkali Metal Release During BIOMASS Pyrolysis[J]. Proceedings of the Combustion Institute, 2017, 36(2):2243-2251
    [6] Capablo J. Formation of Alkali Salt Deposits in Biomass Combustion[J]. Fuel Processing Technology, 2016, 153:58-73
    [7] Ma R H, Lin Y C, Kuo C P. The Study of Thermal Pyrolysis Mechanisms for Chloro Organic Compounds in Electric Cable and Medical Wastes[J]. Journal of Analytical and Applied Pyrolysis, 2006, 75(2):245-251
    [8] Takeshita Y, Kato K, Takahashi K, et al. Basic Study on Treatment of Waste Polyvinyl Chloride Plastics by Hydrothermal Decomposition in Subcritical and Supercritical Regions[J]. The Journal of Supercritical Fluids, 2004,31(2):185-193
    [9] Mckay G. Dioxin Characterisation, Formation and Minimisation During Municipal Solid Waste(MSW)incineration:Review[J]. Chemical Engineering Journal, 2002,86(3):343-368
    [10] Hatanaka T, Kitajima A, Takeuchi M. Role of Chlorine in Combustion Field in Formation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans During Waste Incineration[J]. Environmental Science&Technology, 2005,39(24):9452-9456
    [11]李晓东,杨忠灿,严建华,等.垃圾焚烧炉氯源对氯化氢和二噁英排放的影响[J].工程热物理学报,2003, 24(6):1047-1050LI Xiaodong, YANG Zhongcan, YAN Jianhua, et al. Effects of Chlorine on HCl and PCDD/Fs Emission in a MSW Incinerator.[J]. Journal of Engineering Thermalphysics. 2003, 24(6):1047-1050
    [12]徐旭,严建华,岑可法.垃圾焚烧过程二恶英的生成机理及相关理论模型[J].能源工程,2004(4):42-45XU Xu, YAN Jianhua, CEN Kefa. Formation Mechanism of Dioxins in MSW Incineration[J]. Energy Engineering.2004(4):42-45
    [13] Park M, Komarneni S, Roy R. Microwave—Hydrothermal Decomposition of Chlorinated Organic Compounds[J].Materials Letters, 2000, 43(5/6):259-263
    [14] Zhao P T, Shen Y F, Ge S F, et al. Energy Recycling from Sewage Sludge by Producing Solid Biofuel withHydrothermal Carbonization[J]. Energy Conversion and Management, 2014, 78(Supplement C):815-821
    [15] Smith A M, Singh S, Ross A B. Fate of Inorganic Material During Hydrothermal Carbonisation of Biomass:Influence of Feedstock on Combustion Behaviour of Hydrochar[J]. Fuel, 2016, 169:135-145
    [16] Van Poucke R, Nachenius R W, Agbo K E, et al. Mild Hydrothermal Conditioning Prior to Torrefaction and Slow Pyrolysis of Low-Value Biomass[J]. Bioresource Technology, 2016, 217:104-112
    [17] Sermyagina E, Saari J, Kaikko J, et al. Hydrothermal Carbonization of Coniferous Biomass:Effect of Process Parameters on Mass and Energy Yields[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113:551-556
    [18] Prawisudha P, Namioka T, Yoshikawa K. Coal Alternative fuel Production from Municipal Solid Wastes Employing Hydrothermal Treatment[J]. Applied Energy, 2012, 90(1):298-304
    [19] Liu C G, Wyman C E. The Effect of Flow Rate of Very Dilute Sulfuric Acid on Xylan, Lignin, and Total Mass Removal from Corn Stover[J]. Industrial&Engineering Chemistry Research, 2004, 43(11):2781-2788
    [20] Demirbas A. Estimating of Structural Composition of Wood and Non-Wood Biomass Samples[J]. Energy Sources, 2005, 27(8):761-767
    [21] Kambo H S, Dutta A. A Comparative Review of biochar and Hydrochar in Terms of Production, Physico-Chemical Properties and Applications[J]. Renewable and Sustainable Energy Reviews, 2015, 45:359-378
    [22] Heitz M, Capek Mnard E, Koeberle P G, et al. Fractionation of Populus Tremuloides at the Pilot Plant Scale:Optimization of Steam Pretreatment Conditions Using the STAKE II Technology[J]. Bioresource Technology, 1991,35(1):23-32
    [23] Garrote G, Dom Nguez H, Paraj J C. Hydrothermal Processing of Lignocellulosic Materials[J]. Holz als Roh-and Werkstoff, 1999, 57(3):191-202
    [24] Glasser W G, Sarkanen S. Lignin:Properties and Materials[M]. 1989
    [25] Reza M T, Lynam J G, Vasquez V R, et al. Pelletization of Biochar from Hydrothermally Carbonized Wood[J]. Environmental Progress&Sustainable Energy, 2012,31(2):225-234
    [26]何平笙,朱平平,杨海洋.对聚合物玻璃化转变的几点新认识[J].化学通报,2006(2):154-157HE Pingsheng, ZHU Pingping, YANG Haiyang. Some New Understandings on Glass Transition of Polymers[J].Chemistry(Huaxue Tongbao), 2006(2):154-157
    [27]黄进.木质素化学及改性材料[M].北京:化学工业出版社,2014HUANG Jin. Lignin Chemistry and Modified Materials[M]. Beijing:Chemical Industry Press, 2014
    [28] Libra J A, Ro K S, Kammann C, et al. Hydrothermal Carbonization of Biomass Residuals:a Comparative Review of the Chemistry, Processes and Applications of wet and Dry Pyrolysis[J]. Biofuels, 2011, 2(1):71-106
    [29] Friedl A, Padouvas E, Rotter H, et al. Prediction of Heating Values of Biomass fuel From Elemental Composition[J]. Analytica Chimica Acta, 2005, 544(1/2):191-198
    [30] Crelling J C H H, Sauter D H, Ramani R V, et al. Coal in:Ullmann's Encyclopedia of Industrial Chemistry[M].Weinheim:Germany, Wiley VCH, 2006:5-6
    [31] Yoshioka T, Kameda T, Imai S, et al. Dechlorination of Poly(Vinyl Chloride)Using NaOH in Ethylene Glycol Under Atmospheric Pressure[J]. Polymer Degradation and Stability, 2008, 93(6):1138-1141
    [32] Shen Y F, Yu S L, Ge S, et al. Hydrothermal Carbonization of Medical Wastes and Lignocellulosic Biomass for Solid Fuel Production from Lab-Scale to Pilot-Scale[J].Energy, 2017, 118:312-323
    [33]庄新姝,王树荣,袁振宏,等.纤维素超低酸水解产物的分析[J].农业工程学报,2007, 23(2):177-182ZHUANG Xinshu, WANG Shurong, YUAN Zhenhong,et al. Analysis of Cellulose Hydrolysis Products in Ex-tremely Low Acids[J]. Transactions of the CSAE, 2007,23(2):177-182
    [34] Patwardhan P R, Satrio J A, Brown R C, et al. Influence of Inorganic Salts on the Primary Pyrolysis Products of Cellulose[J]. Bioresource Technology, 2010, 101(12):4646-4655
    [35]葛立超,张彦威,应芝,等.水热处理对我国典型褐煤气化特性的影响[J].中国电机工程学报,2013(32):14-20, 11GE Lichao, ZHANG Yanwei, YING Zhi, et al. Proceedings of the CSEE[J]. 2013(32):14-20, 11
    [36] Funke A Z F. Hydrothermal Carbonization of Biomass:a Literature Survey Focusing on its Technical Application and Prospects[C]//17th European Biomass Conference and Exhibition. Hamburg, Germany, 2009:1037-105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700