Axial magnetic field effect in numerical analysis of high power Cherenkov free electron laser
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Axial magnetic field effect in numerical analysis of high power Cherenkov free electron laser
  • 作者:F ; BazoubAND ; B ; Maraghechi
  • 英文作者:F BazoubAND;B Maraghechi;Department of Physics, Fasa University;Department of Physics, Manhattanville College;
  • 英文关键词:Cherenkov free electron laser;;axial magnetic field;;flat dielectric slab;;electron beam
  • 中文刊名:ZGWL
  • 英文刊名:中国物理B
  • 机构:Department of Physics, Fasa University;Department of Physics, Manhattanville College;
  • 出版日期:2019-06-15
  • 出版单位:Chinese Physics B
  • 年:2019
  • 期:v.28
  • 语种:英文;
  • 页:ZGWL201906026
  • 页数:8
  • CN:06
  • ISSN:11-5639/O4
  • 分类号:176-183
摘要
Cherenkov free electron laser(CFEL) is simulated numerically by using the single particle method to optimize the electron beam. The electron beam is assumed to be moving near the surface of a flat dielectric slab along a growing radiation. The set of coupled nonlinear differential equations of motion is solved to study the electron dynamics. For three sets of parameters, in high power CFEL, it is found that an axial magnetic field is always necessary to keep the electron beam in the interaction region and its optimal strength is reported for each case. At the injection point, the electron beam's distance above the dielectric surface is kept at a minimum value so that the electrons neither hit the dielectric nor move away from it to the weaker radiation fields and out of the interaction region. The optimal electron beam radius and current are thereby calculated. This analysis is in agreement with two previous numerical studies for a cylindrical waveguide but is at odds with analytical treatments of a flat dielectric that does not use an axial magnetic field. This is backed by an interesting physical reasoning.
        Cherenkov free electron laser(CFEL) is simulated numerically by using the single particle method to optimize the electron beam. The electron beam is assumed to be moving near the surface of a flat dielectric slab along a growing radiation. The set of coupled nonlinear differential equations of motion is solved to study the electron dynamics. For three sets of parameters, in high power CFEL, it is found that an axial magnetic field is always necessary to keep the electron beam in the interaction region and its optimal strength is reported for each case. At the injection point, the electron beam's distance above the dielectric surface is kept at a minimum value so that the electrons neither hit the dielectric nor move away from it to the weaker radiation fields and out of the interaction region. The optimal electron beam radius and current are thereby calculated. This analysis is in agreement with two previous numerical studies for a cylindrical waveguide but is at odds with analytical treatments of a flat dielectric that does not use an axial magnetic field. This is backed by an interesting physical reasoning.
引文
[1] Perenzoni M and Paul D J 2014 Physics and Applications of Terahertz Radiation(Springer)
    [2] Weide D V D 2003 Opt. Photon. News 14 48
    [3] Ciocci F, Dattoli G, De Angelis A, et al. 1987 Nucl. Instrum. Methods Phys. Res. A 259 128
    [4] Ciocci F, Doria A, Gallerano G P, Giabbai I, Kimmitt M F, Messina G,Renieri A and Walsh J E 1991 Phys. Rev. Lett. 66 699
    [5] Garate E, Cook R, Heim P, Layman R and Walsh J 1985 J. Appl. Phys.58 627
    [6] Garate E, Shaughnessy C and Walsh J 1987 IEEE J. Quantum Electron23 1627
    [7] Garate E P, Moustaizis S, Buzzi J M, Rouille C and Lamain H 1986Appl. Phys. Lett. 48 1326
    [8] Walsh J and Murphy J 1982 IEEE J. Quantum Electron. 18 1259
    [9] Liu F, Xiao L, Ye Y, Wang M, Cui K, Feng X, Zhang W and Huang Y2017 Nat. Photon. 11289
    [10] Asgekar V B and Dattoli G 2005 Opt. Commun. 255 309
    [11] Ciocci F, Dattoli G, Doria A, Gallerano G P, Schettini G, Toree A E D, Auston D, Jacobs R, Bartolini R and Liao P 1987 in Conference on Lasers and Electro-Optics, Baltimore, Maryland,OSA, USA
    [12] Gallerano G P, Doria A, Giovenale E and Renieri A 1999 Infrared Phys.Technol. 40 161
    [13] Kalkal Y and Kumar V 2015 Phys. Rev. ST Accel. Beams 18 030707
    [14] Wiggins S M, Jaroszynski D A, McNeil B W J, Robb G R M, Aitken P, Phelps A D R, Cross A W, Ronald K, Ginzburg N S, Shpak V G,Yalandin M I, Shunailov S A and Ulmaskulov M R 2000 Phys. Rev.Lett. 84 2393
    [15] Fares H and Yamada M 2011 Phys. Plasmas 18 093106
    [16] Gore B W and Asgekar V B 1996 Phys. Scr. 53 62
    [17] Li D, Huo G, Imasaki K, Asakawa M and Tsunawaki Y 2010 Infrared Phys. Technol. 53 204
    [18] Sharma G and Mishra G 2012 Nucl. Instrum. Methods Phys. Res. A 68535
    [19] Freund H P 1990 Phys. Rev. Lett. 65 2993
    [20] Freund H P and Ganguly A K 1990 Phys. Fluids B 2 2506
    [21] Li D, Wang Y, Hangyo M, Wei Y Z, Yang and Miyamoto S 2014 Appl.Phys. Lett. 104 194102
    [22] Wang Y, Wei Y, Li D, Takano K, Nakajima M, Jiang X, Tang X, Shi X,Gong Y, Feng J and Miyamoto S 2015 Phys. Plasmas 22 083 111
    [23] Wang Y, Wei Y, Li D, Wanghe W, Xianbao S, Xia L, Qian L, Hairong Y, Jin X, Luqi Z, Chong D, Yubin G and Wenxiang W 2016 in IEEE International Vacuum Electronics Conference(IVEC)
    [24] Kalkal Y and Kumar V 2016 Nucl. Instrum. Methods Phys. Res. A 82785
    [25] Fares H 2012 Nucl. Instrum. Methods Phys. Res. A 690 111
    [26] Cao M M, Liu W X, Wang Y and Li K 2014 Acta Phys. Sin. 63 024101
    [27] Cao M M, Liu W X, Wang Y and Li K 2016 Acta Phys. Sin. 65 014101
    [28] Ye Y, Liu F, Cui K, Feng X, Zhang W and Huang Y 2018 Opt. Express26 31402
    [29] Li M, Yang X F, Xu Z, et al. 2018 Acta Phys. Sin. 67 084102
    [30] Lin X L, Zhang J B, Lu Y, Luo F, Lu S L, Yu T M and Dai Z M 2010Chin. Phys. Lett. 27 044101
    [31] Li W, Jiang S, He Z, Jia Q, Wang L and He D D 2018 in 9th International Particle Accelerator Conference, Canada, JACoW
    [32] Owens I J and Brownell J H 2005 J. Appl. Phys 97 104915
    [33] Weatherall J C and Main W 1992 Phys. Fluids B 4 1953
    [34] Main W T, Garate E, Weatherall J C and Cherry R 1992 IEEE T. Plasma Sci. 20 281
    [35] Asgekar V B and Dattoli G 2002 Opt. Commun. 206 373
    [36] Fares H, Yamada M and Kuwamura Y 2010 Jpn. J. Appl. Phys. 49096402
    [37] de la Fuente I, van der Slot P J M and Boller K J 2007 Phys. Rev. ST Accel. Beams 10 020702
    [38] Fares H 2012 Phys. Plasmas 19 053109
    [39] Kalkal Y and Kumar V 2016 Phys. Rev. Accel. Beams 19 060702
    [40] Yatsenko T, Ilyenko K and Sotnikov G V 2012 Phys. Plasmas 19063107
    [41] Hill N, Vaughan W, Price A H and Davies M 1969 Dielectric Properties and Molecular behaviour(London:Van Nostrand Reinhold)
    [42] Freund H P and Antonsen T M 1992 Principles of free-electron laser(London:Chapman-Hall), Chap. 2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700