Si含量对等离子烧结制备W/Si复合粉末材料组织与性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Si Content on Microstructure and Performance of W/Si Composite Powder Materials Prepared by Plasma Sintering
  • 作者:蔡婷婷 ; 杨云 ; 刘镕玮 ; 王媛媛
  • 英文作者:CAI Tingting;YANG Yun;LIU Rongwei;WANG Yuanyuan;Department of Chemistry and Chemical, Luliang College;Department of Mining Engineering,Luliang College;
  • 关键词:W/Si复合材料 ; Si含量 ; 放电等离子烧结 ; 抗激光冲击性能
  • 英文关键词:W/Si composite;;Si content;;spark plasma sintering;;laser shock resistance
  • 中文刊名:SJGY
  • 英文刊名:Hot Working Technology
  • 机构:吕梁学院化学化工系;吕梁学院矿业工程系;
  • 出版日期:2018-05-17 17:11
  • 出版单位:热加工工艺
  • 年:2018
  • 期:v.47;No.488
  • 基金:国家级大学生创新训练项目(20150714116);; 吕梁学院校级青年基金项目(ZRQN201618)
  • 语种:中文;
  • 页:SJGY201810031
  • 页数:4
  • CN:10
  • ISSN:61-1133/TG
  • 分类号:114-117
摘要
利用机械球磨与放电等离子烧结相结合方法制备不同Si含量的W/Si复合粉末材料,并通过SEM、EDS、XRD等手段分析其组织形态特征及抗激光冲击性能。结果表明:随粉末中的Si含量增大,复合粉末的团聚程度不断增加。烧结后复合粉末材料生成Si_3W与W_5Si_2两种物相。采用放电等离子烧结方式能够有效促进材料致密度的提高,其断裂形式是沿晶断裂类型。随Si含量上升,材料显微硬度减小,W/10wt%Si复合粉末材料的硬度最高。经激光热冲击作用后,复合粉末材料表面形成了熔融区、影响区与边缘区,W/20wt%Si与W/30wt%Si复合粉末材料中出现了损伤与裂纹。
        The W/Si composite powder materials with different Si content were prepared by mechanical ball milling and spark plasma sintering, and the microstructure and laser shock resistance were analyzed by means of SEM, EDS and XRD.The results show that, with the increase of Si content in the powder, the agglomeration degree of the composite powder increases. After sintering, Si_3 W and W_5 Si_2 phases are formed in composite powder materials. Spark plasma sintering can increase the density of the materials effectively, and the fracture form is intergranular fracture. With the increase of Si content,the microhardness of the materials decreases. The hardness of W/10 wt% Si composite powder material is the highest. After laser thermal shock, melting zone, influence zone and edge zone form on the surface of composite powder material. Damage and crack appear in W/20 wt%Si and W/30 wt%Si composite powder materials.
引文
[1]郭双全,冯云彪,燕青芝,等.偏滤器中钨与异种材料的连接技术研究进展[J].焊接技术,2010,39(9):3-6.
    [2]李秀青,魏世忠.纳米W-Cu复合粉体制备工艺的研究进展[J].热加工工艺,2017,46(6):24-26.
    [3]Zhang S W,Wen Y,Zhang H J.Low temperature preparation of tungsten nanoparticles from molten salt[J].Powder Technology,2014,253(16):464-466.
    [4]丁孝禹,罗来马,黄丽枚,等.湿化学法制备W-Ti C复合粉体及其SPS烧结行为[J].中国有色金属学报,2014,24(10):2594-2600.
    [5]Ei-atwani O,Hinks J A,Greaves G.In-situ TEM observation of the response of ultrafine and nanocrystalline-grained tungsten to extreme irradiation environments[J].Scientific Reports,2014,4(17):4716-4720.
    [6]张俊,朱晓勇,罗来马,等.面向等离子体ODS-W复合粉末材料的制备工艺[J].核聚变与等离子体物理,2014,34(4):348-354.
    [7]Chen C L,Zeng Y.Influence of Ti content on synthesis and characteristics of W-Ti ODS alloy[J].Journal of Nuclear Materials,2016,469(32):1-8.
    [8]Liu Y,Wang G,Wang J,et al.Mobilities and diffusivities for bcc Nb-W,Nb-Ta,Zr-Mo and Zr-Hf alloys[J].Journal of Alloys and Compounds,2013,555(28):381-389.
    [9]杨梨容,魏成富,栾道成,等.纳米钨铜复合材料制备技术的研究进展[J].热加工工艺,2008,37(10):89-92.
    [10]Mabuchi M,Okamoto K,Saito N.Tensile properties at elevated temperature of W-1%La2O3[J].Materials Science and Engineering A,1996,214(1/2):174-176.
    [11]谢韩,宋云涛,姚达毛.EAST超导托卡马克偏滤器水冷结构设计[J].核聚变与等离子体物理,2009,29(4):331-334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700