掺钨VO_2薄膜的电致相变特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film
  • 作者:张娇 ; 李毅 ; 刘志敏 ; 李政鹏 ; 黄雅琴 ; 裴江恒 ; 方宝英 ; 王晓华 ; 肖寒
  • 英文作者:Zhang Jiao;Li Yi;Liu Zhi-Min;Li Zheng-Peng;Huang Ya-Qin;Pei Jiang-Heng;Fang Bao-Ying;Wang Xiao-Hua;Xiao Han;School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology;Shanghai Key Laboratory of Modern Optical System;School of Electronic and Information Engineering,Shanghai University of Electric Power;College of Medical Imaging,Shanghai University of Medicine and Health Sciences;
  • 关键词:掺钨VO2薄膜 ; 电致相变 ; 阈值电压 ; 光透过率
  • 英文关键词:tungsten-doped VO2 film;;electrically-induced phase transition;;threshold voltage;;optical transmittance
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:上海理工大学光电信息与计算机工程学院;上海市现代光学系统重点实验室;上海电力学院电子与信息工程学院;上海健康医学院影像学院;
  • 出版日期:2017-10-31 10:27
  • 出版单位:物理学报
  • 年:2017
  • 期:v.66
  • 基金:国家高技术研究发展计划(批准号:2006AA03Z348);; 教育部科学技术研究重点项目(批准号:207033);; 上海市科学技术委员会科技攻关计划(批准号:06DZ11415);; 上海市教育委员会科技创新重点项目(批准号:10ZZ94);; 上海领军人才培养计划(批准号:2011-026)资助的课题~~
  • 语种:中文;
  • 页:WLXB201723032
  • 页数:9
  • CN:23
  • ISSN:11-1958/O4
  • 分类号:283-291
摘要
采用直流磁控溅射与后退火工艺相结合的方法,在掺氟SnO_2(FTO)导电玻璃基底上制备了高质量的掺钨VO_2薄膜,对薄膜的结构、表面形貌和光电特性进行测试,分析了钨掺杂对其相变性能的影响.结果表明,室温下掺钨VO_2薄膜的阈值电压为4.2 V,观察到阈值电压下约有两个数量级的电流突变.随着温度升高,相变的阈值电压降低,且电流突变幅度减小.当施加8 V电压时,分别在不同温度下测试了掺钨VO_2薄膜的透过率.温度为20和50℃时,掺钨VO_2薄膜相变前后的红外透过率差量分别为23%和27%.与未掺杂的VO_2薄膜相比,掺钨VO_2薄膜具有相变温度低、阈值电压低和电阻率小的特点,在高速光电器件中有广阔的应用前景.
        The phase transition characteristics of tungsten-doped vanadium dioxide film driven by an applied voltage are studied in the paper. A high-quality film is successfully deposited on an FTO(F:SnO_2) transparent conductive glass substrate by direct current magnetron sputtering and post-anneal processing. First of all, an FTO substrate is placed in the chamber of magnetron sputtering system after being cleaned and dried. Then W-doped vanadium film is fabricated on the substrate with V-W alloy target with 1.4% W by mass fraction. In the process of magnetron sputtering, the operating pressure is kept at 3.0×10~(-1) Pa, and the operating voltage and current are 400 V and 2 A, respectively. Finally, W-doped VO_2 film with a thickness of about 310 nm is prepared by being annealed at 400℃ in air atmosphere for 2.5 h. In order to explore the crystal structure, element constituents, surface morphology, roughness and photoelectric properties of W-doped vanadium dioxide film, it is respectively characterized by X-ray photoelectron spectroscopy(XPS), X-ray diffraction(XRD), scanning electron microscope(SEM), atomic force microscope(AFM) and semiconductor parameter analyzer. The XPS analysis confirms that there are no other elements except vanadium, oxygen, carbon and tungsten on the surface of W-doped VO_2 film. The XRD patterns illustrate that tungsten-doping exerts an influence on the crystal lattice of VO_2, but the film still prefers the orientation(110). The SEM and AFM images display that the film with low roughness has a compact structure and irregular crystal particles. Tungsten-doping is found to be able to improve the surface morphology of VO_2 thin film significantly. In addition, a remarkable change in electrical resistivity and a narrow thermal hysteresis loop are also obtained in the metal-semiconductor phase transition. Further, the influences of tungsten-doping on the phase transition properties of the film are analyzed. The experiment demonstrates that the threshold voltage at which the phase transition of W-doped VO_2 film occurs is 4.2 V at room temperature when the film is driven by an applied voltage ranging from 0 V to 8 V. It can be observed clearly that the current changes abruptly by two orders of magnitude. As the ambient temperature rises, the threshold voltage of phase transition drops and the current varies slightly. The optical transmittance curves show the distinct differences under applied voltage at different temperatures. It is found that the infrared transmittance difference reaches up to a maximal value of 27% at 50℃ during phase transition, while it increases by only 23% at 20℃ in a wavelength range of 1100–1500 nm. All these outstanding features indicate that W-doped VO_2 film has excellent properties of electrically-induced phase transition.Compared with undoped-VO_2 film, the W-doped VO_2 film is predicated to have a wide range of applications in the high-speed optoelectronic devices due to its advantages of lower phase transition temperature, resistivity and threshold voltage.
引文
[1]Morin F J 1959 Phys.Rev.Lett.3 34
    [2]Tong G X,Li Y,Wang F,Huang Y Z,Fang B Y,Wang X H,Zhu H Q,Liang Q,Yan M,Qin Y,Ding J,Chen S J,Chen J K,Zheng H Z,Yuan W R 2013 Acta Phys.Sin.62 208102(in Chinese)[佟国香,李毅,王锋,黄毅泽,方宝英,王晓华,朱慧群,梁倩,严梦,覃源,丁杰,陈少娟,陈建坤,郑鸿柱,袁文瑞2013物理学报62 208102]
    [3]Tazawa M,Jin P,Tanemura S 1998 Appl.Opt.37 1858
    [4]Manning T D,Parkin I P,Pemble M E,Sheel D,Vernardou D 2004 Chem.Mater.16 744
    [5]Lawton S A,Theby E A 1995 J.Am.Ceram.Soc.78238
    [6]Mao Z P,Wang W,Liu Y,Zhang L P,Xu H,Zhong Y2014 Thin Solid Films 558 208
    [7]Wang X J,Liu Y Y,Li D H,Feng B H,He Z W,Qi Z2013 Chin.Phys.B 22 066803
    [8]Paone A,Sanjines R,Jeanneret P,Whitlow H J,Guibert E,Guibert G,Bussy F,Scartezzini J,Schüeler A 2015J.Alloys.Compd.621 206
    [9]Takami H,Kanki T,Ueda S,Kobayashi K,Tanaka H2012 Phys.Rev.B 85 205111
    [10]Liu D,Cheng H,Xing X,Zhang C,Zheng W 2016 Infrared Phys.Technol.77 339
    [11]Chen Z,Wen Q Y,Dong K,Sun D D,Qiu D H,Zhang H W 2013 Chin.Phys.Lett.30 017102
    [12]Okuyama D,Shibuya K,Kumai R,Suzuki T,Yamasaki Y,Nakao H,Murakami Y,Kawasaki M,Taguchi Y,Tokura Y,Arima T 2015 Phys.Rev.B 91 064101
    [13]Xiao Y,Zhai Z H,Shi Q W,Zhu L G,Li J,Huang W X 2015 Appl.Phys.Lett.107 031906
    [14]Hao R L,Li Y,Liu F,Sun Y,Tang J Y,Chen P Z,Jiang W,Wu Z Y,Xu T T,Fang B Y,Wang X H,Xiao H 2015 Acta Phys.Sin.64 198101(in Chinese)[郝如龙,李毅,刘飞,孙瑶,唐佳茵,陈培祖,蒋蔚,伍征义,徐婷婷,方宝英,王晓华,肖寒2015物理学报64 198101]
    [15]Xiong Y,Wen Q Y,Tian W,Chen Z,Yang Q H,Jing Y L 2015 Acta Phys.Sin.64 017102(in Chinese)[熊瑛,文岐业,田伟,陈智,杨青慧,荆玉兰2015物理学报64017102]
    [16]Qiu D H,Wen Q Y,Yang Q H,Chen Z,Jing Y L,Zhang H W 2013 Acta Phys.Sin.62 217201(in Chinese)[邱东鸿,文岐业,杨青慧,陈智,荆玉兰,张怀武2013物理学报62 217201]
    [17]Zhou Y,Chen X N,Ko C H,Yang Z,Mouli C,Ramanathan S 2013 IEEE Electr.Dev.Lett.34 220
    [18]Markov P,Appavoo K,Haglund R F,Weiss S M 2015Opt.Express 23 6878
    [19]Soltani M,Chaker M,Haddad E,Kruzelecky R,Margot J,Laou P,Paradis S 2008 J.Vac.Sci.Technol.A 26763
    [20]Soltani M,Chaker M,Haddad E,Kruzelecky R,Margot J 2007 J.Vac.Sci.Technol.A 25 971
    [21]Bhattacharyya S R,Majumder S 2012 Adv.Sci.Lett.5268
    [22]Acosta D R,Estrada W,Castanedo R,Maldonado A,Valenzuela M A 2000 Thin Solid Films 375 147
    [23]Rajeswaran B,Umarji A M 2016 AIP.Adv.6 035215
    [24]Yan J Z,Zhang Y,Liu Y S,Zhang Y B,Huang W X,Tu M J 2008 Rare Metal Mater.Eng.37 1648(in Chinese)[颜家振,张月,刘阳思,张玉波,黄婉霞,涂铭旌2008稀有金属材料与工程37 1648]
    [25]Continenza A,Massidda S,Posternak M 1999 Phys.Rev.B 60 15699

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700