共溅射氧化法制备掺钼VO_2及其相变特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Mo-doped VO_2 Thin Films via Cosputtering-Oxidation and Their Phase Transition Properties
  • 作者:朱慧群 ; 陈飞 ; 王启汶 ; 杜尚昆 ; 李竻康
  • 英文作者:Zhu Huiqun;Chen Fei;Wang Qiwen;Du Shangkun;Li Lekang;Wuyi University;
  • 关键词:VO2薄膜 ; 共溅射 ; 钼掺杂 ; 相变
  • 英文关键词:VO2 thin film;;cosputtering;;Mo-doped;;phase transition
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:五邑大学;
  • 出版日期:2015-06-15
  • 出版单位:稀有金属材料与工程
  • 年:2015
  • 期:v.44;No.347
  • 基金:广东省自然科学基金(10152902001000025);; 广东省教育厅高校特色创新项目(2014KTSCX129);; 广东省大学生创新创业训练计划项目(2012-2014);; 江门市科技项目(江财工[2012]156,江科[2014]145)
  • 语种:中文;
  • 页:COSE201506041
  • 页数:4
  • CN:06
  • ISSN:61-1154/TG
  • 分类号:217-220
摘要
采用共溅射氧化法,在普通玻璃衬底上室温直流溅射沉积钒钼金属薄膜,再在大气环境下经热氧化处理获得掺钼VO2薄膜。通过XRD、SEM、热致相变电学特性等分析,研究制备工艺及掺杂改性对掺钼VO2薄膜的微结构、形貌、热滞回线和相变温度的影响。实验与分析结果表明,与相同厚度的纯VO2薄膜相比,钼掺杂显著改变了VO2薄膜的表面形貌特征,掺钼VO2薄膜呈多晶态且沿VO2(002)择优取向生长,结晶性和取向性明显提高,薄膜的相变温度降低至38℃,热滞回线宽度收窄约至8℃。低温共溅射氧化法制备的掺钼VO2薄膜的热阻效应明显,薄膜的金属-半导体相变特性良好。
        The V-Mo metal thin films were deposited on the glass substrates by magnetron co-sputtering at room temperature,and then the prepared metal thin films were sufficiently oxidized to the Mo-doped VO2 thin films by thermal oxidation under the air condition.The effects of the preparation processing and Mo doping on the microstructure,the morphology,the thermal hysteresis loop and phase transition temperature of the VO2 thin films were analyzed by XRD,SEM and resistance-temperature measurement.The results show that Mo doping significantly changes the surface morphologies of VO2 thin films,and Mo-doped VO2 thin films exhibit VO2(002) preferred orientation growth with greatly improved crystallinity and orientation.Compared with VO2,the phase transition temperature of Mo-doped VO2 thin films drops to 38 oC,and the width of thermal hysteresis loop narrows to 8 oC.It is demonstrated that Mo-doped VO2 thin films prepared by V-Mo cosputtered-oxidation at room temperature have an obvious thermal sensitive effect,and keep a good characteristic from metal to semiconductor phase transition.
引文
[1]Morin F J.Phys Rev Lett[J],1959,3(1):34
    [2]Hiroshi Kakiuchida,Ping Jin,Masato Tazawa.Solar Energy Materials&Solar Cells[J],2008,92(10):1279
    [3]Joyeeta N,Haglund Jr R F.J Phys Condens Matter[J],2008,20(26):264 016
    [4]Luo Zhenfei,Wu Zhiming,Xu Xiangdong et al.Thin Solid Films[J],2011,519:6203
    [5]Gao Yanfeng,Luo Hongjie,Zhang Zongtao et al.Nano Energy[J],2012,1:221
    [6]He Peng(何鹏),Yan Jiazhen(颜家振),Huang Wanxia(黄婉霞)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2010,39(5):867
    [7]Wang Xuejin,Liu Yuying,Li Dehua et al.Chin Phys B[J],2013,22:066 803
    [8]Zhu Naiwei,Hu Ming,Xia Xiaoxu et al.Chin Phys B[J],2014,23:048 108
    [9]Manfredi Saeli,Russell Binions,Clara Piccirillo et al.Appl Surf Sci[J],2009,255:7291
    [10]Hiroshi Kakiuchida,Ping Jin,Masato Tazawa.Thin Solid Films[J],2008,516(14):4563
    [11]Parkin,Ivan P,Maning et al.J Chem Education[J],2006,83(3):393
    [12]Ye Junwei,Zhou Li,Liu Fengjuan et al.J Alloy Compd[J],2010,504(21):503
    [13]Hanlon T J,Coath J A,Richardson M A.Thin Solid Film[J],2003,436:269
    [14]Lin Hua(林华),Huang Weigang(黄维刚),Tu Mingjin(涂铭旌)et al.Journal of Functional Materials(功能材料)[J],2004,35(z1):188
    [15]Pragna Kiri,Michael E A,Warwick et al.Thin Solid Films[J],2011,520:1363
    [16]Shi Jianqiu,Zhou Shuxue,You Bo et al.Solar Energy Materials&Solar Cells[J],2007,91(19):1856
    [17]Yan Jiazhen(颜家振),Zhang Yue(张月),Liu Yangsi(刘阳思)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2008,37(9):1648
    [18]Bowman R M,Gregg J M.J Mater Sci:Mater in El[J],1998,9(3):187
    [19]Christopher S Blackman,Piccirillo C,Binions R et al.Thin Solid Films[J],2009,517(16):4565
    [20]Pauli S A,Herger R,Willmott P R et al.J Appl Phys[J],2007,102(7):3527
    [21]Gao Wang(高旺),Hu Ming(胡明),Hou Shunbao(后顺保)et al.Acta Phys Sin(物理学报)[J],2013,62(1):018104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700