土壤重金属修复植物处置技术研究现状与展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Disposal Technology for Heavy Metal Hyperaccumulator Plants
  • 作者:李方洲 ; 滕玉婷 ; 张亚平 ; 刘媛
  • 英文作者:LI Fangzhou;TENG Yuting;ZHANG Yaping;LIU Yuan;Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment,Southeast University;China Association of Environmental Protection Industry;
  • 关键词:土壤 ; 重金属污染 ; 修复植物 ; 处置技术 ; 研究进展
  • 英文关键词:soil;;heavy metal pollution;;phytoremediation;;disposal technology;;research progress
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:东南大学能源与环境学院能源热转换及其过程测控教育部重点实验室;中国环境保护产业协会;
  • 出版日期:2018-12-15
  • 出版单位:环境科学与技术
  • 年:2018
  • 期:v.41
  • 基金:国家重点研发计划(2018YFD0800304);; 江苏省自然科学基金(BK20171075);; 省级土地开发整理财政专项资助-苏财建(2015-447)
  • 语种:中文;
  • 页:FJKS2018S2039
  • 页数:8
  • CN:S2
  • ISSN:42-1245/X
  • 分类号:217-224
摘要
修复植物在进行土壤修复时会对重金属进行提取,但重金属的迁移以及其在生物质中的富集也带来了潜在的危害,一旦处置不当便会造成"二次污染",这也使得富集大量重金属的修复植物安全处置成为了亟待解决的问题。该文对修复植物传统处置技术最新进展进行了综述,如焚烧法、气化法、堆肥法、热解法、压缩填埋法和液相萃取法等,并对资源化处置技术,如植物冶金、热液提质及合成纳米材料等进行了未来展望,以期对今后的重金属超积累植物减量化、无害化、资源化处置技术的深入研究提供有效参考,对完善植物修复处置技术的理论依据和促进实际应用发展提供参考。
        Heavy metals was extracted by hyperaccumulator plants during soil remediation, but the migration of heavy met?als and their enrichment in biomass had resulted in a series of potential hazard. Secondary pollution was caused by improper disposal of hyperaccumulator plants. The safe disposal of hyperaccumulator plants enriched a large amount of heavy metal had become an urgent problem to be solved. Recent advances in the traditional disposal techniques of hyperaccumulator plants such as incineration, gasification, composting, pyrolysis, compressed landfill, and liquid extraction were discussed in this review. The future prospects for new resource-based disposal technologies such as phytomining, hydrothermal upgrading, and synthesis of nanocomposites were discussed. It is expected to provide an effective reference for future research on the technol?ogy of reducing, detoxifying and recycling of heavy metal-enriched biomass, and to help improve the theoretical basis of phy?toremediation and disposal technologies while promote the development of practical applications.
引文
[1]环境保护部,国土资源部.全国土壤污染状况调查公报[J].中国环保产业,2014,36(5):1689-1692.Ministry of Environmental Protection of China,Ministry of Natural Resources of China.Report on the national general survey of soil contamination[J].China Environmental Protection Industry,2014,36(5):1689-1692.
    [2]李如意,李丁.废弃重金属的植物修复与再利用研究进展[J].生物产业技术,2017,11(3):106-110.Li Ruyi,Li Ding.Research progress on phytoremediation of toxic heavy metals and its application on recycling[J].Biotechnology&Business,2017,11(3):106-110.
    [3]高喜,张佩,徐川川,等.土壤重金属污染的植物修复[J].中国资源综合利用,2017,36(3):70-74.Gao Xi,Zhang Pei,Xu Chuanchuan,et al.Phytoremediation of heavy metal contaminated soil[J].China Resources Comprehensive Utilization,2017,36(3):70-74.
    [4]Sas Nowosielska A,Kucharski R,Ma?kowski E,et al.Phytoextraction crop disposal:an unsolved problem[J].Environmental Pollution,2004,128(3):373-379.
    [5]Zeng T,Weller N,Pollex A,et al.Blended biomass pellets as fuel for small scale combustion appliances:Influence on gaseous and total particulate matter emissions and applicability of fuel indices[J].Fuel,2016,184:689-700.
    [6]Yan X L,Chen T B,Liao X Y,et al.Arsenic transformation and volatilization during incineration of the Hyperaccumulator Pteris vittata L.[J].Environmental Science and Technology,2008,42(5):1479-1484.
    [7]Zhong D,Zhong Z,Wu L,et al.Thermal characteristics of hyperaccumulator and fate of heavy metals during thermal treatment of Sedum plumbizincicola[J].International Journal of Phytoremediation,2015,17(8):766-776.
    [8]Lazaroiu G,Pop E,Negreanu G,et al.Biomass combustion with hydrogen injection for energy applications[J].Energy,2017,127:351-357.
    [9]Kovacs H,Szemmelveisz K,Koós T.Theoretical and experimental metals flow calculations during biomass combustion[J].Fuel,2016,185:524-531.
    [10]Hu Y,Wang J,Deng K,et al.Characterization on heavy metals transferring into flue gas during sewage sludge combustion[J].Energy Procedia,2014,61:2867-2870.
    [11]Stanislav V Vassilev,Christina G Vassileva,Song Yuncai,et al.Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion[J].Fuel,2017,208:377-409.
    [12]Wielgosiński G,?echtańska P,Namiecińska O.Emission of some pollutants from biomass combustion in comparison to hard coal combustion[J].Journal of the Energy Institute,2017,90(5):787-796.
    [13]Yu L Y,Wang L W,Li P S.Study on prediction models of biomass ash softening temperature based on ash composition[J].Journal of Combustion Science and Technology,2014,87(3):215-219.
    [14]Mendiara T,Gayán P,García Labiano F,et al.Chemical looping combustion of biomass:an approach to BECCS[J].Energy Procedia,2017,114:6021-6029.
    [15]薛辉,仲兆平,钟道旭,等.超积累植物与煤在混烧过程中重金属的迁移特性[J].环境工程学报,2016,10(5):2581-2586.Xue Hui,Zhong Zhaoping,Zhong Daoxu,et al.Transfer characteristics of heavy metals during co-incineration of hyperaccumulator and coal[J].Chinese Journal of Environmental Engineering,2016,10(5):2581-2586.
    [16]Zhang Y,Geng P,Liu R.Synergistic combination of biomass torrefaction and co-gasification:1.reactivity studies[J].Bioresour Technol,2017,245(Pt A):225-233.
    [17]Zhang X,Li H,Liu L,et al.Thermodynamic and economic analysis of biomass partial gasification process[J].Applied Thermal Engineering,2018,129:410-420.
    [18]Duan L,Li X,Jiang Y,et al.Arsenic transformation behaviour during thermal decomposition of P.vittata,an arsenic hyperaccumulator[J].Journal of Analytical&Applied Pyrolysis,2017,124:584-591.
    [19]Ying J,Ameh A,Mei L,et al.Solid-gaseous phase transformation of elemental contaminants during the gasification of biomass[J].Science of the Total Environment,2014,30(7):1993-2003.
    [20]Xiao Y,Xu S,Song Y,et al.Biomass steam gasification for hydrogen-rich gas production in a decoupled dual loop gasification system[J].Fuel Processing Technology,2017,165:54-61.
    [21]潘贤齐,苏德仁,周肇秋,等.生物质流化床气化中试实验研究[J].农业机械学报,2014,45(10):175-179.Pan Xianqi,Su Deren,Zhou Zhaoqiu,et al.Experimental investigation of biomass gasification in a pilot-scale fluidized bed gasifier[J].Transactions of the Chinese Society for Agricultural Machinery,2014,45(10):175-179.
    [22]Froment K,Defoort F,Bertrand C,et al.Thermodynamic equilibrium calculations of the volatilization and condensation of inorganics during wood gasification[J].Fuel,2013,107(9):269-281.
    [23]Jiang Y,Ameh A,Lei M,et al.Solid-gaseous phase transformation of elemental contaminants during the gasification of biomass[J].World Journal of Microbiology&Biotechnology,2014,30(7):724-730.
    [24]Hetland M D,Gallagher J R,Daly D,et al.Processing of Plants Used to Phytoremediate Lead-contaminated Sites[M]Richland:Battelle Press,2001:129-136.
    [25]Zhao F J,Lombi E,Breedon T,et al.Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri[J].Plant Cell&Environment,2000,23(5):507-514.
    [26]Tian S K,Lu L L,Yang X E,et al.The impact of EDTA on lead distribution and speciation in the accumulator Sedum alfredii by synchrotron X-ray investigation[J].Environmental Pollution,2011,159(3):782-788.
    [27]Luo J,Cai L,Qi S,et al.Improvement effects of cytokinin on EDTA assisted phytoremediation and the associated environmental risks[J].Chemosphere,2017,185:386-393.
    [28]Cao X,Ma L,Shiralipour A,et al.Biomass reduction and arsenic transformation during composting of arsenic-rich hyperaccumulator Pteris vittata L[J].Environmental Science&Pollution Research International,2010,17(3):586-594.
    [29]Yu G,Lei H,Bai T,et al.In-situ stabilisation followed by ex-situ composting for treatment and disposal of heavy metals polluted sediments[J].Journal of Environmental Sciences,2009,21(7):877-883.
    [30]Soares M A,Quina M J,Quinta-Ferreira R M.Immobilisation of lead and zinc in contaminated soil using compost derived from industrial eggshell[J].Journal of Environmental Management,2015,164:137-145.
    [31]唐明灯,吴龙华,李宁,等.修复植物香薷堆肥对缺铜土壤上冬小麦生长和铜吸收的初步研究[J].土壤,2006,38(5):614-618.Tang Mingdeng,Wu Longhua,Li Ning,et al.Preliminary study on effect of elsholtzia splendens compost on plant growth and Cu uptake by winter wheat in a Cu-deficient upland soil[J].Soils,2006,38(5):614-618.
    [32]钟慧琼,夏娟娟,赵增立,等.超富集植物热解中氯对重金属迁移特性的影响[J].农业工程学报,2011,27(7):274-278.Zhong Huiqiong,Xia Juanjuan,Zhao Zengli,et al.Effects of chlorine on heavy metals migration during pyrolysis of hyperaccumulator biomass[J].Transactions of the Chinese Society of Agricultural Engineering,2011,27(7):274-278.
    [33]Stals M,Thijssen E,Vangronsveld J,et al.Flash pyrolysis of heavy metal contaminated biomass from phytoremediation:influence of temperature,entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals[J].Journal of Analytical&Applied Pyrolysis,2010,87(1):1-7.
    [34]Biswas B,Singh R,Krishna B B,et al.Pyrolysis of azolla,sargassum tenerrimum and water hyacinth for production of bio-oil.[J].Bioresource Technology,2017,242:139-145.
    [35]Duan L,Li X,Jiang Y,et al.Arsenic transformation behaviour during thermal decomposition of P.vittata,an arsenic hyperaccumulator[J].Journal of Analytical&Applied Pyrolysis,2017,124:584-591.
    [36]Chami Z A,Amer N,Smets K,et al.Evaluation of flash and slow pyrolysis applied on heavy metal contaminated sorghum bicolor shoots resulting from phytoremediation[J].Biomass&Bioenergy,2014,63(7):268-279.
    [37]Kuppens T,Dael M V,Vanreppelen K,et al.Techno-economic assessment of fast pyrolysis for the valorization of short rotation coppice cultivated for phytoextraction[J].Journal of Cleaner Production,2015,88:336-344.
    [38]Zhong D,Zhong Z,Wu L,et al.Pyrolysis of Sedum plumbizincicola,a zinc and cadmium hyperaccumulator:pyrolysis kinetics,heavy metal behaviour and bio-oil production[J].Clean Technologies&Environmental Policy,2016,18(7):1-9.
    [39]Cui X,Shen Y,Yang Q,et al.Simultaneous syngas and biochar production during heavy metal separation from Cd/Zn hyperaccumulator(Sedum alfredii)by gasification[J].Chemical Engineering Journal,2018,347:543-551.
    [40]吴贤豪,李建新,王永川,等.超积累植物热解中重金属迁移及渗滤特性研究[J].环境科学学报,2017,37(7):2707-2712.Wu Xianhao,Li Jianxin,Wang Yongchuan,et al.Fate and leaching characteristic of heavy metals during pyrolysis of hyperaccumulator[J].Acta Scientiae Circumstantiae,2017,37(7):2707-2712.
    [41]Zhao F J,Lombi E,Breedon T,et al.Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri[J].Plant Cell&Environment,2000,23(5):507-514.
    [42]Kovacs H,Szemmelveisz K,Palotas A B.Solubility analysis and disposal options of combustion residues from plants grown on contaminated mining area[J].Environmental Science&Pollution Research International,2013,20(11):7917-7925.
    [43]?oruh S,Elevli S,Ergun O N,et al.Assessment of leaching characteristics of heavy metals from industrial leach waste[J].International Journal of Mineral Processing,2013,123(9):165-171.
    [44]A D Oka M,Fujii Y.Removal of heavy metals from synthetic landfill leachate in lab-scale vertical flow constructed wetlands[J].Science of the Total Environment,2017,584:742-750.
    [45]Luo J,Cai L,Qi S,et al.Influence of direct and alternating current electric fields on efficiency promotion and leaching risk alleviation of chelator assisted phytoremediation[J].Ecotoxicology&Environmental Safety,2018,149:241-247.
    [46]Sas Nowosielska A,Kucharski R,Ma?kowski E,et al.Phytoextraction crop disposal:an unsolved problem[J].Environmental Pollution,2004,128(3):373-379.
    [47]Vivian H,Berenice R,Baptiste L,et al.Agromining of hyperaccumulator biomass:Study of leaching kinetics of extraction of nickel,magnesium,potassium,phosphorus,iron,and manganese from Alyssum murale ashes by sulfuric acid[J].Chemical Engineering Research and Design,2018,129:1-11.
    [48]Nú?ez López R A,Meas Y,Gama S C,et al.Leaching of lead by ammonium salts and EDTA from Salvinia minima,biomass produced during aquatic phytoremediation[J].Journal of Hazardous Materials,2008,154(1/2/3):623-632.
    [49]Luo C L,Shen Z G,Li X D.Plant uptake and the leaching of metals during the hot EDDS-enhanced phytoextraction process[J].International Journal of Phytoremediation,2007,9(3):181-196.
    [50]Bareen F E,Saeed S,Afrasiab H.Differential mobilization and metal uptake versus leaching in multi-metal soil columns using EDTA and three metal bioaccumulators[J].International Journal of Phytoremediation,2017,19(12):1109-1117.
    [51]Ent A V D,Baker A J M,Balgooy M M J V,et al.Ultramafic nickel laterites in Indonesia(Sulawesi,Halmahera):mining,nickel hyperaccumulators and opportunities for phytomining[J].Journal of Geochemical Exploration,2013,128(2):72-79.
    [52]Ent A V D,Baker A J M,Reeves R D,et al.Agromining:farming for metals in the future[J].Environmental Science and Technology,2015,49(8):4773-4780.
    [53]Zhang X,Laubie B,Houzelot V,et al.Increasing purity of ammonium nickel sulfate hexahydrate and production sustainability in a nickel phytomining process[J].Chemical Engineering Research&Design,2016,106:26-32.
    [54]Chaney R L,Angle J S,Broadhurst C L,et al.Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies[J].Journal of Environmental Quality,2007,36(5):1429-1443.
    [55]Robinson B H,Anderson C W N,Dickinson N M.Phytoextraction:Where's the action[J].Journal of Geochemical Exploration,2015,151:34-40.
    [56]Rosenkranz T,Kidd P,Puschenreiter M.Effect of bacterial inoculants on phytomining of metals from waste incineration bottom ash[J].Waste Management,2018,73:351-359.
    [57]Zhang X,Laubie B,Houzelot V,et al.Increasing purity of ammonium nickel sulfate hexahydrate and production sustainability in a nickel phytomining process[J].Chemical Engineering Research&Design,2016,106:26-32.
    [58]Yang J G.Heavy metal removal and crude bio-oil upgrading from Sedum plumbizincicola harvest using hydrothermal upgrading process[J].Bioresource Technology,2010,101(19):7653-7657.
    [59]Yang J G,Li J Y,Yang J Y,et al.Hydrothermal processing of arsenic containing bioremediation biomass:Pteris vittata[J].Journal of Environmental Chemical Engineering,2014,2(3):1358-1364.
    [60]Han Ziyu,Guo Zhaohui,Zhang Yong,et al.Adsorption-pyrolysis technology for recovering heavy metals in solution using contaminated biomass phytoremediation[J].Resources,Conservation&Recycling,2018,129:20-26.
    [61]Uchman W,Skorek Osikowska A,Werle S.Evaluation of the potential of the production of electricity and heat using energy crops with phytoremediation features[J].Applied Thermal Engineering,2017,126:194-203.
    [62]Xu X,Tu R,Sun Y,et al.Influence of biomass pretreatment on upgrading of bio-oil:comparison of dry and hydrothermal torrefaction[J].Bioresource Technology,2018,262:261-270.
    [63]Ahmed S,Annu,Chaudhry S A,et al.A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes:a prospect towards green chemistry[J].Journal of Photochemistry&Photobiology B Biology,2017,166(1):272-284.
    [64]Ahmed S,Annu,Ikram S,et al.Biosynthesis of gold nanoparticles:a green approach[J].Journal of Photochemistry&Photobiology B Biology,2016,161:141-153.
    [65]Qu J,Luo C,Cong Q,et al.Recycling of the hyperaccumulator Brassica juncea L.:synthesis of carbon nanotube-Cu/ZnOnanocomposites[J].Journal of Material Cycles&Waste Management,2014,16(1):162-166.
    [66]Wang D,Liu H,Ma Y,et al.Recycling of hyper-accumulator:synthesis of ZnO nanoparticles and photocatalytic degradation for dichlorophenol[J].Journal of Alloys&Compounds,2016,680:500-505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700