铝毒对不同耐铝性大麦品种初生根的影响差异
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Different effects of aluminum toxicity on primary roots of two barley cultivars with different aluminum-tolerance
  • 作者:潘伟槐 ; 潘建伟 ; 寿建昕 ; 郭天荣 ; 莫亿伟
  • 英文作者:PAN Weihuai;PAN Jianwei;SHOU Jianxin;GUO Tianrong;MO Yiwei;College of Life Sciences,Shaoxing University;School of Life Sciences,Lanzhou University;
  • 关键词:大麦 ; 初生根 ; 铝毒 ; 耐铝 ; 生理响应
  • 英文关键词:barley;;primary root;;aluminum toxicity;;aluminum tolerance;;physiological responses
  • 中文刊名:ZJNY
  • 英文刊名:Journal of Zhejiang University(Agriculture and Life Sciences)
  • 机构:绍兴文理学院生命科学学院;兰州大学生命科学学院;
  • 出版日期:2018-05-25
  • 出版单位:浙江大学学报(农业与生命科学版)
  • 年:2018
  • 期:v.44;No.208
  • 基金:国家自然科学基金(31670283,91754104);; 浙江省自然科学基金(LY16C130004)
  • 语种:中文;
  • 页:ZJNY201803012
  • 页数:8
  • CN:03
  • ISSN:33-1247/S
  • 分类号:89-96
摘要
为揭示耐铝机制在大麦铝毒中的生物学功能,以耐铝大麦品种沪麦8号和铝敏感品种嵊县无芒六棱为研究材料,经不同铝浓度(0、50、100和150μmol/L Al Cl_3)处理后,分别测定大麦初生根活跃吸收面积、质膜透性、游离脯氨酸和丙二醛的含量,以及超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)、过氧化物酶(peroxidase,POD)、Ca~(2+)-ATP酶和Mg~(2+)-ATP酶等的活性,分析铝毒对不同耐铝性大麦初生根的影响差异。结果表明:与空白对照相比,铝毒胁迫对2个不同耐铝性大麦品种的各类生理学指标的影响总体呈相似的变化趋势;但铝毒对耐铝品种沪麦8号初生根的活跃吸收面积、质膜透性、Ca~(2+)-ATP酶和Mg~(2+)-ATP酶活性的抑制作用明显比铝敏感品种嵊县无芒六棱小,并且沪麦8号的SOD和CAT活性高于嵊县无芒六棱;相反,嵊县无芒六棱的游离脯氨酸和丙二醛含量高于沪麦8号。这些研究结果表明,大麦耐铝品种和敏感品种对铝毒胁迫的生理响应具有较大差异,揭示了耐铝机制在大麦铝毒胁迫中的功能,为进一步剖析大麦铝毒和耐铝机制提供了新的观点。
        To reveal the biological role of aluminum(Al)-tolerant mechanism in barley Al toxicity,the Altolerant cultivar Humai 8 and Al-sensitive cultivar Shengxian awnless six-rowed barley(Shengxian 6)were used as experimental materials,and treated with different concentrations of Al Cl_3(0,50,100 and 150μmol/L).The active absorbing area,cell membrane permeability,contents of free proline and malondialdehyde(MDA),and the activities of superoxide dismutase(SOD),catalase(CAT),peroxidase(POD),Ca~(2+)-ATPase,and Mg~(2+)-ATPase in primary roots of barley were examined to analyze different effects of Al toxicity on the primary roots of two barley cultivars with different Al-tolerance.The results showed that,compared with the control,the effects of Al toxicity on multiple physiological indexes displayed similar changes in the two barley cultivars with different Altolerance;however,the inhibitory effects of Al toxicity on the active absorbing area,cell membrane permeability,and activities of Ca~(2+)-ATPase and Mg~(2+)-ATPase in Al-tolerant cultivar Humai 8 were lower than those in Alsensitive cultivar Shengxian 6,and the activity levels of SOD and CAT in Humai 8 were higher than those in Shengxian 6.By contrast,the contents of free proline and MDA in Shengxian 6 were higher than those in Humai 8.These results suggest that Al-tolerant and Al-sensitive barley cultivars differentially respond to Al toxicity at the physiological level,revealing the role of Al-tolerant mechanisms in barley Al toxicity,and providing a new insight into dissecting Al toxicity and Al-tolerant mechanisms in barley.
引文
[1]JONES D L,RYAN P R.Aluminum toxicity.Encyclopedia of Applied Plant Sciences,2003:656-664.
    [2]SINGH S,TRIPATHI D K,SINGH S,et al.Toxicity of aluminium on various levels of plant cells and organism:Areview.Environmental and Experimental Botany,2017,137:177-193.
    [3]王生银,袁世力,谢建平,等.植物耐铝分子机制研究进展.植物生理学报,2016,52(12):1804-1810.WANG S Y,YUAN S L,XIE J P,et al.Progress on molecular mechanisms of aluminum tolerance in plants.Plant Physiology Journal,2016,52(12):1804-1810.(in Chinese with English abstract)
    [4]CHEN Z C,ZHAO X Q,SHEN R F.The alleviating effect of ammonium on aluminum toxicity in Lespedeza bicolor results in decreased aluminum-induced malate secretion from roots compared with nitrate.Plant and Soil,2010,337:389-398.
    [5]INOSTROZA-BLANCHETEAU C,RENGEL Z,ALBERDIM,et al.Molecular and physiological strategies to increase aluminum resistance in plants.Molecular Biology Reports,2012,39(3):2069-2079.
    [6]KOCHIAN L V,HOEKENGA O A,PINEROS M A.How do crop plants tolerate acid soils?Mechanisms of aluminum tolerance and phosphorous efficiency.Annual Review of Plant Biology,2004,55:459-493.
    [7]RYAN P R,TYERMAN S D,SASAKI T,et al.The identification of aluminium resistance genes provides opportunities for enhancing crop production on acid soils.Journal of Experimental Botany,2011,62(1):9-20.
    [8]RODRIGUES A A,VASCONCELOS-FILHO S C,RODRIGUES C L,et al.Aluminum influence on Hancornia speciosa seedling emergence,nutrient accumulation,growth and root anatomy.Flora,2017,236/237:9-14.
    [9]SILVA S.Aluminium toxicity targets in plants.Journal of Botany,2012,2012:219462.
    [10]朱睦元,周建华,徐阿炳.大麦耐铝性与根际p H值变化的关系.杭州大学学报(自然科学版),1995,22(1):83-89.ZHU M Y,ZHOU J H,XU A B.Relationship between differential acid aluminum tolerance and rhizosphere p Hchange of medium in Hordeum vulgare L.Journal of Hangzhou University(Natural Science),1995,22(1):83-89.(in Chinese with English abstract)
    [11]周建华,潘伟槐,徐阿炳,等.恒定p H系统中不同大麦品种的耐铝性.杭州大学学报(自然科学版),1997,24(1):85-90.ZHOU J H,PAN W H,XU A B,et al.Aluminum tolerance of different barley cultivars in a constant system of p H.Journal of Hangzhou University(Natural Science),1997,24(1):85-90.(in Chinese with English abstract)
    [12]周建华,潘建伟,朱睦元.铝胁迫下大麦根过氧化物酶同工酶及根中Al、Ca和P含量的变化.浙江农业学报,2001,13(4):190-196.ZHOU J H,PAN J W,ZHU M Y.The changes of peroxidase isozyme and Al,Ca and P contents in barley roots under Al stress.Acta Agriculturae Zhejiangensis,2001,13(4):190-196.(in Chinese with English abstract)
    [13]PAN J W,YE D,WANG L L,et al.Root border cell development is a temperature-insensitive and Al-sensitive process in barley.Plant and Cell Physiology,2004,45(6):751-760.
    [14]GUO T R,ZHANG G P,ZHANG Y H.Physiological changes in barley plants under combined toxicity of aluminum,copper and cadmium.Colloids and Surfaces B,2007,57(2):182-188.
    [15]PAN W H,SHOU J X,ZHOU X R,et al.Al-induced cell wall hydroxyproline-rich glycoprotein accumulation is involved in alleviating Al toxicity in rice.Acta Physiologiae Plantarum,2011,33(2):601-608.
    [16]郑炳松.现代植物生理生化研究技术.北京:气象出版社,2006:234-237,264-265.ZHENG B S.Modern Research Techniques of Plant Physiology and Biochemistry.Beijing:China Meteorological Press,2006:234-237,264-265.(in Chinese)
    [17]白书农.一种改进的排水式体积计.植物生理学通讯,1987(5):51-52.BAI S N.An improved water-displaced volumenomter.Plant Physiology Communications,1987(5):51-52.(in Chinese with English abstract)
    [18]üNYAYAR S,KELES Y,üNAL E.Proline and ABA levels in two sunflower genotypes subjected to water stress.Bulgarian Journal of Plant Physiology,2004,30(3/4):34-37.
    [19]BATES L S,WALDREN R P,TEARE I D.Rapid determination of free proline for water stress studies.Plant and Soil,1973,39(1):205-207.
    [20]GIANNOPOLITIS C N,RIES S K.Superoxide dismutases:Ⅰ.Occurrence in higher plants.Plant Physiology,1977,59(2):309-314.
    [21]CUI X M,ZHANG Y K,WU X B,et al.The investigation of the alleviated effect of copper toxicity by exogenous nitric oxide in tomato plants.Plant Soil and Environment,2010,56(6):274-281.
    [22]谢卫华,姚菊芳,袁勤生.连苯三酚自氧化法测定超氧化物歧化酶活性的改进.医药工业,1988,19(5):217-220.XIE W H,YAO J F,YUAN Q S.Modification of pyrogallol autoxidation method for assay of superoxide dismutase.Pharmaceutical Industry,1988,19(5):217-220.(in Chinese with English abstract)
    [23]邹国林,桂兴芬,钟晓凌,等.一种SOD的测活方法:邻苯三酚自氧化法的改进.生物化学与生物物理进展,1986(4):71-73.SHAO G L,GUI X F,ZHONG X L,et al.A SOD activity assay:Modification of pyrogallol autoxidation method.Progress in Biochemistry and Biophysics,1986(4):71-73.(in Chinese)
    [24]AEBI H.Catalase in vitro//Methods in Enzymology.New York,USA:Academic Press,1984,105:121-126.
    [25]CAKMAK I,MARSCHNER H.Magnesium deficiency and high light intensity enhance activities of superoxide dismutase,ascorbate peroxidase,and glutathione reductase in bean leaves.Plant Physiology,1992,98(4):1222-1227.
    [26]王伟玲,王展,王晶英.植物过氧化物酶活性测定方法优化.实验室研究与探索,2010,29(4):21-23.WANG W L,WANG Z,WANG J Y.Optimization of determination method of peroxidase activity in plant.Research and Exploration in Laboratory,2010,29(4):21-23.(in Chinese with English abstract)
    [27]KUMAR G N M,KNOWLES N R.Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato(Solanum tuberosum)seed-tubers.Plant Physiology,1993,102(1):115-124.
    [28]张芬琴,沈振国,刘友良.铝和铝+钙对小麦幼苗根尖质膜、液泡膜微囊ATP酶和膜流动性的影响.植物生理学报,2000,26(2):105-110.ZHANG F Q,SHEN Z G,LIU Y L.Effect of Al3+and Al3++Ca2+on ATPases and membrane fluidities of plasma membrane and tonoplast vesicles from root tips of wheat seedlings.Acta Phytophysiologica Sinica,2000,26(2):105-110.(in Chinese with English abstract)
    [29]OHNISHI T,GALL R S,MAYER M L.An improved assay of inorganic phosphate in the presence of extralabile phosphate compounds:Application to the ATPase assay in the presence of phosphocreatine.Analytical Biochemistry,1975,69(1):261-267.
    [30]BRADFORD M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Analytical Biochemistry,1976,72(1/2):248-254.
    [31]MATSUMOTO H,YAMAMOTO Y,KASAI M.Changes of some properties of the plasma membrane-enriched fraction of barley roots related to aluminum stress:Membraneassociated ATPase,aluminum and calcium.Soil Science and Plant Nutrition,1992,38(3):411-419.
    [32]张芬琴,沈振国.铝处理下小麦幼苗根系膜脂过氧化作用和质膜微囊ATP酶活性的变化.西北植物学报,1999,19(4):578-584.ZHANG F Q,SHEN Z G.Changes of lipid peroxidation and ATPases activities of wheat root plasma membrane vesicles under aluminium stress.Acta Botanica BorealiOccidentalia Sinica,1999,19(4):578-584.(in Chinese with English abstract)
    [33]王精明,李美茹.低温对水稻幼苗根细胞质膜、液泡膜Mg2+-ATP酶活性的影响.湖北农学院学报,2000,20(4):295-297.WANG J M,LI M R.Effect of low temperature on the activity of Mg2+-ATPase in root plasma membrane and tonoplast membrane of rice seedlings.Journal of Hubei Agricultural College,2000,20(4):295-297.(in Chinese with English abstract)
    [34]何龙飞,沈振国,刘友良.铝胁迫下钙对小麦根系细胞质膜ATP酶活性和膜脂组成的效应.中国农业科学,2003,36(10):1139-1142.HE L F,SHEN Z G,LIU Y L.Effects of calcium on ATPase activity and lipid composition of plasma membranes of wheat roots under aluminum stress.Scientia Agricultura Sinica,2003,36(10):1139-1142.(in Chinese with English abstract)
    [35]MILLER G,STEIN H,HONIG A,et al.Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation.Planta,2005,222:70-79.
    [36]VERBRUGGEN N,HERMANS C.Proline accumulation in plants:A review.Amino Acids,2008,35(4):753-759.
    [37]LUTTS S,KINET J M,BOUHARMONT J.Effects of salt stress on growth,mineral nutrition and proline accumulation in relation to osmotic adjustment in rice(Oryza sativa L.)cultivars differing in salinity resistance.Plant Growth Regulation,1996,19(3):207-218.
    [38]张宗申,利容千,王建波.Ca2+预处理对热胁迫下辣椒叶肉细胞中Ca2+-ATP酶活性的影响.植物生理学报,2004,27(6):451-454.ZHANG Z S,LI R Q,WANG J B.Effect of Ca2+pretreatment on the Ca2+-ATPase activity in the mesophyll cells of pepper seedling under heat stress.Acta Phytophysiologica Sinica,2004,27(6):451-454.(in Chinese with English abstract)
    [39]MATSUMOTO H,YAMAYA T.Inhibition of potassium uptake and regulation of membrane-associated Mg2+-ATPase activity of pea roots by aluminium.Soil Science and Plant Nutrition,1986,32(2):179-188.
    [40]RENGEL Z.Uptake of aluminum by plant cells.New Phytologist,1996,134(3):389-406.
    [41]KAWANO T,KADONO T,FURUICHI T,et al.Aluminuminduced distortion in calcium signaling involving oxidative bursts and channel regulation in tobacco BY-2 cells.Biochemical and Biophysical Research Communications,2003,308(1):35-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700