适用于轮毂电机驱动电动汽车的ABS控制逻辑研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on ABS Control Logic for In-Wheel-Motor Electric Vehicle
  • 作者:李敏 ; 杨坤 ; 王杰 ; 田昭贤 ; 李鹏程
  • 英文作者:Li Min;Yang Kun;Wang Jie;Tian Zhaoxian;Li Pengcheng;Shandong University of Technology;
  • 关键词:轮毂电机 ; 制动防抱死系统 ; 车轮转动惯量 ; 逻辑门限值控制 ; 正交试验
  • 英文关键词:IWM;;Anti-lock braking system;;Wheel inertia;;Logic threshold control;;Orthogonal experiment
  • 中文刊名:QCJS
  • 英文刊名:Automobile Technology
  • 机构:山东理工大学;
  • 出版日期:2019-07-11 08:22
  • 出版单位:汽车技术
  • 年:2019
  • 期:No.526
  • 基金:国家自然科学基金项目(51605265);; 山东省重点研发计划项目(2018GGX105010)
  • 语种:中文;
  • 页:QCJS201907011
  • 页数:6
  • CN:07
  • ISSN:22-1113/U
  • 分类号:46-51
摘要
以用于轮毂电机驱动电动汽车的ABS控制逻辑为研究对象,通过SPSS软件设计了正交试验,并用L9(33)正交表对门限值进行了方差分析,得到了车轮转动惯量增加对门限值设置的影响规律,同时确定了最佳门限。基于MATLAB/Simulink搭建了7自由度整车模型,分析了车轮转动惯量增加对ABS控制效果的影响。仿真结果表明,在路面附着系数为0.85、制动初速度为90 km/h的条件下,利用提出的分析方法调整门限值后,制动距离最大缩短了5 m,制动时间减少了0.15 s,ABS控制效果显著提升。
        Taking the control logic for ABS of In-Wheel-Motor(IWM) electric vehicle as the research object, the orthogonal experiment is designed by SPSS software, and the variance is analyzed by L9(33) orthogonal table. The law of influence of the increase of wheel inertia on the threshold setting is obtained and the optimal threshold was determined.Based on MATLAB/Simulink, a seven-degree-of-freedom vehicle model is built. The influence of the increase of wheel moment of inertia on the control effect of ABS is analyzed. The results of simulation show that, with road adhesion coefficient of 0.85 and initial braking speed of 90 km/h, after threshold is adjusted with the proposed analysis method, the braking distance is shortened by 5 m, the braking time is reduced by 0.15 s, and ABS control effect is significantly improved.
引文
[1]Murata S.Vehicle Dynamics Innovation with In-Wheel Motor[J].SAE Technical Paper 2011-39-7204,2011.
    [2]王吉.电动轮汽车制动集成控制策略与复合ABS控制研究[D].长春:吉林大学,2011.
    [3]林辉.轮毂电机驱动电动汽车联合制动的模糊自整定PID控制方法研究[D].长春:吉林大学,2013.
    [4]Wu D M,Ding H T,Guo K H,et al.Stability Control of FourWheel-Drive Electric Vehicle with Electro-Hydraulic Braking System[J].SAE Technical Paper 2014-01-2539,2014.
    [5]谢东明.基于乘用车ABS试验的各试验场低附着路面现状分析[J].汽车技术,2016,36(11):36-38.
    [6]Watts A,Vallance A,Whitehead A,et al.The Technology and Economics of In-Wheel Motors[J].SAE Technical Paper,2010-01-2307,2010.
    [7]王志忠.对开路面弯道制动ABS控制策略研究[J].汽车技术,2012,30(8):12-14.
    [8]Li Y,Zhang J,Guo K,et al.A Study on Force Distribution Control for the Electric Vehicle with Four In-wheel motors,SAE Technical Paper 2014-01-2379,2014.
    [9]Kawashima K,Uchida T,Hory Y.Rolling Stability Control of In-wheel Electric Vehicle Based on Two-Degree-ofFreedom Control[C]//Proceedings of Advanced Motion Control 10th IEEE International Workshop,2008:751-756.
    [10]万松.轮边驱动电动车质量比对车辆性能的影响[J].机械设计与研究,2011,24(9):36-39.
    [11]程军.汽车防抱死制动系统的理论与实践[M].北京:北京理工大学出版社,1999.
    [12]Wu D,Ding H,Guo K,et al.Stability Control of FourWheel-Drive Electric Vehicle with Electro-Hydraulic Braking System,SAE Technical Paper 2014-01-2539,2014.
    [13]汪志强.轮毂电机对车辆操纵稳定性和平顺性的影响研究[D].长春:吉林大学,2014.
    [14]胡凯.基于门限逻辑的气压ABS控制算法研究[D].长沙:湖南大学,2013.
    [15]郝亮.车辆ABS控制算法设计及硬件在环验证[J].辽宁工业大学学报(自然科学版),2017,37(5):312-316.
    [16]Khatun P,Bingham C M,Mellor P H.Comparison of Control Methods for Electric Vehicle Antilock Braking/Traction Control Systems[J].SAE Technical Paper 2001-01-0596,2011.
    [17]罗木生.吊放声纳搜潜参数正交试验设计与优化[J].系统仿真学报,2017,29(3):671-674.
    [18]Zhu J J,Chew D A S,Lv S N,et al.Optimization Method for Building Envelope Design to Minimize Carbon Emissions of Building Operational Energy Consumption Using Orthogonal Experimental Design(OED)[J].Habitat International,2013(37):148-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700