斜激波与反应性气体界面作用的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation on Interaction Between Oblique Shock Wave and Reactive Gaseous Interface
  • 作者:胡明媛 ; 董刚 ; 陈耀慧 ; 栗保明
  • 英文作者:HU Mingyuan;DONG Gang;CHEN Yaohui;LI Baoming;National Key Laboratory of Transient Physics,Nanjing University of Science and Technology;
  • 关键词:斜激波 ; 气体界面 ; 时间尺度 ; 着火 ; 数值模拟
  • 英文关键词:oblique shock wave;;gaseous interface;;time scale;;ignition;;numerical simulation
  • 中文刊名:DDXB
  • 英文刊名:Journal of Ballistics
  • 机构:南京理工大学瞬态物理国家重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:弹道学报
  • 年:2019
  • 期:v.31;No.119
  • 基金:国家自然科学基金项目(11872213);; 装备预研重点实验室基金项目
  • 语种:中文;
  • 页:DDXB201901011
  • 页数:8
  • CN:01
  • ISSN:32-1343/TJ
  • 分类号:64-71
摘要
为解决新概念冲压加速器加速过程中的不启动问题,提出了在加速管内进行分层充气的概念,利用斜激波与分层可燃气体界面相互作用来实现装置的正常启动。采用高度数值模拟的方法研究了这一相互作用的过程,考察了不同来流速度(斜激波强度)和可燃预混气体的充填量对该过程的影响,提出了相互作用过程引发着火燃烧的时间尺度条件,估算了不同来流速度下的推力性能。研究结果表明:较大的来流速度和更多的可燃预混气体充填量有利于着火的发生;着火是否发生受化学反应和分层气体界面不稳定的双重影响,当化学反应延迟时间尺度小于流动时间尺度时,可以发生着火燃烧;燃烧后的流场表现为爆轰波和非预混火焰界面共同存在的特殊模式;在较大的来流速度下,燃烧场的推力性能更高、更稳定。
        In order to solve the unstart during the acceleration of the new concept ram accelerator,the stratified charging concept in the accelerating tube was proposed,and the interaction between an oblique shock wave and a reactively stratified gaseous interface was used to achieve normal start of the device. The numerical simulations with high-resolution scheme were carried out for the interaction. The effects of different inflow velocities( intensity of oblique shock wave) and the filling amount of combustible premixed gas on the interaction process were studied. The time scale conditions of the combustion process during the process were proposed,and the thrust performances under different inflow velocities were estimated.The results show that the higher inflow velocity and more filling amount of flammable premixed gas are in favor of the occurrence of ignition. Both the chemical reaction and the gas interface instability affect whether the ignition occurs. When the delay time scale of chemical reaction is smaller than the flow time scale,the ignition occurs. The flow field of combustion can be featured by a special mode in which the detonation wave and the non-premixed flame interface coexist. Under the conditions of higher inflow velocity,the thrust performance of the combustion field is higher and more stable.
引文
[1]HERTZBERG A,BRUCKNER A P,BOGDANOFF D W.Ram accelerator:a new chemical method for accelerating projectiles to ultrahigh velocities[J].AIAA Journal,1988,26(2):195-203.
    [2]柳森,简和祥,白智勇,等.37 mm冲压加速器试验和计算[J].力学学报,1999,31(4):450-455.LIU Sen,JIAN Hexiang,BAI Zhiyong,et al.Experimental tests and numerical calculations for the 37 mm ram accelerator[J].Chinese Journal of Theoretical and Applied Mechanics,1999,31(4):450-455.(in Chinese)
    [3]YUNGSTER S,BRUCKNER A P.Computational studies of a superdetonative ram accelerator mode[J].Journal of Propulsion and Power,2012,8(2):457-463.
    [4]王锁柱,沈娟.新概念高速推进技术---冲压加速器的研究进展[J].飞航导弹,2012(10):76-81.WANG Suozhu,SHEN Juan.New concept high speed propulsion technology:research progress of ram accelerator[J].Winged Missiles Journal,2012(10):76-81.(in Chinese)
    [5]GLUSMAN J F.Theoretical performance model and initial experimentation of a baffled-tube ram accelerator[D].Seattle,WA:University of Washington,2016.
    [6]GHORBANIAN K,PRATT D.An estimate of the doomed propellant fraction for a superdetonative ram accelerator[C]//The31st AIAA Aerospace Sciences Meeting and Exhibit.Reno,NV:AIAA,1993.
    [7]HIGGINS A J.Ram accelerators:outstanding issues and new directions[J].Journal of Propulsion and Power,1971,22(6):1170-1187.
    [8]KNOWLEN C,DANESHVARAN N,DUMAS J,et al.Computational fluid dynamic modeling of baffled tube ram accelerator experiments[C]//2018 AIAA Aerospace Sciences Meeting.Kissimmee,Florida:AIAA,2018:1-11.
    [9]KEE R J,GRCAR J F,SMOOKE M D,et al.PREMIX:a Fortran program for modeling steady laminar one-dimensional premixed flames:SAND85-8240[R].Albuquerque,NM:Sandia National Laboratories,1985.
    [10]JIANG H,DONG G,CHEN X,et al.A parameterization of the Richtmyer-Meshkov instability on a premixed flame interface induced by the successive passages of shock waves[J].Combustion and Flame,2016,169:229-241.
    [11]WU J T,DONG G,LI B M.Parallel chemistry acceleration algorithms based on ISAT method in gaseous detonation computations[J].Computers and Fluids,2018,167:265-284.
    [12]SHI J,ZHANG Y T,SHU C W.Resolution of high order WENOschemes for complicated flow structures[J].Journal of Computational Physics,2003,186(2):690-696.
    [13]BROWN P N.VODE:a variable coefficient ODE solver[J].SIAMJournal on Scientific and Statistical Computing,1989,10(5):1038-1051.
    [14]钱翼稷.空气动力学[M].北京:北京航空航天大学出版社,2004:237-247.QIAN Yiji.Aerodynamics[M].Beijing:Beihang University Press,2004:237-247.(in Chinese)
    [15]LIU C,GAO Y,TIAN S,et al.Rortex-a new vortex vector definition and vorticity tensor and vector decompositions[J].Physics of Fluids,2018,30(3):DOI:10.106311.5023001.
    [16]KEE R J,RUPLEY F M,MILLER J A.Chemkin-II:a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics:SAND-89-8009[R].Livermore,CA:Sandia National Labs,1989.
    [17]马虎,封锋,武晓松,等.压力条件对旋转爆震发动机的影响[J].弹道学报,2012,24(4):94-98.MA Hu,FENG Feng,WU Xiaosong,et al.Effect of pressure condition on rotating detonation engine[J].Journal of Ballistics,2012,24(4):94-98.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700